
 Performance White Paper

GSW RF Directed Terminal I/O Engine

PageDate: November 21, 2006 Georgia SoftWorks Tel: 706.265.1018 Email: sales@georgiasoftworks.com

The GSW Directed Terminal (Windows Console) I/O Engine is an add-on component that
intercepts a specific set of terminal input/output operating system calls initiated by your Windows
32-bit application and directs terminal I/O through a specialized high performance interface within
the GSW Universal Terminal Server (UTS).

The GSW DTIO Engine is specialized software, focused on a narrow set of goals. The
primary objectives are to:

1. Provide significant performance improvements with respect to Terminal I/O processing
2. Increase the number of sessions on a server
3. Allows Bell to sound on the client instead of the server as one would expect
4. Allow a framework where specialized features can be incorporated on a custom basis

While the internal design/workings of the RF DTIO are complex, installation and use are not.

This paper will provide an high level overview of the mechanics performed in order to achieve
items 1 and 2 listed above. It is useful to understand some of the internal software design
related to the problem that is being addressed to see the significance and value of the
software as well as gauging expectations.

Increases in performance by RF DTIO Engine are due to optimizations on a per session basis
by reducing the number of instructions executed and the number of context switches, and
DTIO Super Fine Tuning configuration.

GSW RF DTIO Engine Performance Overview

Page 1 – Overview of data flow between the application and SSH2/Telnet Server

Page 2 – Understanding data flow

Page 3 – Standard un-intelligent mechanism resolution to the data flow complications

Page 4 – RF DTIO Engine Intelligence - Terminal Console I/O Hooking/Intercepting

Page 5 – RF DTIO Intelligent Write mechanism description

Page 6 – RF DTIO Intelligent Read mechanism

The most significant performance improvement provided by RF DTIO is adding intelligence to
the data flow between the application and the SSH2/Telnet Server. There are other areas
such as fine tuning the configuration that provide additional improvements but this paper is
focused on the data flow between the application and the SSH2/Telnet Server.

Intro

Eliminates unnecessary
polling/scanning and

reclaims valuable
processing time.

 Performance White Paper

GSW RF Directed Terminal I/O Engine

PageDate: November 21, 2006 Georgia SoftWorks Tel: 706.265.1018 Email: sales@georgiasoftworks.com

When an application sends data (writes) to a device, it is really writing to locations on a
Virtual Terminal (Windows Console) that are mapped to the device.

The Telnet or SSH2 Server obtains (scans/
reads) the data from the Virtual Terminal
and sends it to the Telnet/SSH2 Client for
display on the device.

High Level Overview
Data Flow Between the Application and SSH2/Telnet Server

However, it’s more involved or complicated than the diagram
would suggest….

1 of 6

To understand how RF DTIO improves performance, we will first review the basic data flow
from the application to the device when using a SSH2/Telnet server.

APPLICATION

Virtual Terminal (VT)

SSH2/TELNET
SERVER

Application writes data to the
Virtual Terminal

Note: The Virtual Terminal is the
Console Window maintained by the
SSH2/Telnet command prompt and
accessed through Windows Win32

Console API’s

 Performance White Paper

GSW RF Directed Terminal I/O Engine

PageDate: November 21, 2006 Georgia SoftWorks Tel: 706.265.1018 Email: sales@georgiasoftworks.com

APPLICATION

Virtual Terminal (VT)

The mechanism used by the Application and SSH2/Telnet Server to recognize
when the application writes data to the Virtual Terminal may not be intuitive.

The Application and the SSH2/Telnet Server are unrelated programs.
The application simply writes data to the Virtual Terminal.

SSH2/Telnet does not have the intelligence to know when the
application has written data to the Virtual Terminal.

Application writes data to
the Virtual Terminal

Any Data Yet

So how does the SSH2/Telnet Server know when there is new data
at the Virtual Terminal?

SSH2/
TELNET
SERVER

2 of 6

Understanding Data Flow

 Performance White Paper

GSW RF Directed Terminal I/O Engine

PageDate: November 21, 2006 Georgia SoftWorks Tel: 706.265.1018 Email: sales@georgiasoftworks.com

The SSH2/Telnet server periodically polls each row/column location on the Virtual Terminal for
new data from the the application. In brief the steps are described below.

 A countdown timer is set (1). When the timer expires (2) SSH2/Telnet reads (3) every location
on the VT to determine if new data is present. If new data is present it is sent (4) to the client
device.

This type of operation works very well and is fast. However certain environments demand
utmost efficiency so that the overall session throughput is maximized to gain an increased
number of sessions and/or optimal session response times.

To achieve higher session throughput, the area with greatest opportunity for processor
utilization is the mechanism that identifies when data is present at the Virtual Terminal. The
current mechanism works well but extra processing occurs in order to provide the fastest
response times to the users.

For example, the countdown timer may expire but there may not be any new data on the VT. If
there is no data, there is no need to spend the processing power to read every location (row and
column) on the VT. This may not consume much processor time with just a few devices but it’s
a different story when there are 40, 100, 200 or more devices.

Typically a screen is scanned for the presence of new data 10 times a second. Two context
switches are required each time the screen is scanned, consuming even more time. If the
number of sessions is 20, and each screen is scanned 10 times a second and that amounts 200
scans occurring each second. The math is simple; a system with 100 sessions will have 1,000
screen scans performed every second. And 300 sessions requires 3,000 scans every second.
On a 1.47 GHz AMD Athlon system running Microsoft Windows XP, this amounts to 117 ms out
of every second spent scanning for new data, and that doesn’t include context switches! The
unfortunate aspect is that in real world situations, most often there is no new data to transmit.
If your scanner performs 1 scan every 5 seconds then 98% of your polling time is wasted
when no new data is present at the Virtual Terminal.

Standard Un-Intelligent Mechanism to Determine when New Data
is Present at the Virtual Terminal

3 of 6

APPLICATION

Virtual Terminal (VT)

Application writes new data to
Virtual Terminal at some point in time.

1. Set Internal
Countdown Timer

3. Read Every Location
on the Virtual Terminal

SSH2/TELNET
SERVER

2. Timer Expires

4. Send any new data
to the terminal

This is where the GSW RF DTIO Engine comes in!

 Performance White Paper

GSW RF Directed Terminal I/O Engine

PageDate: November 21, 2006 Georgia SoftWorks Tel: 706.265.1018 Email: sales@georgiasoftworks.com

Virtual Terminal (VT)

RF DTIO Engine “Hooking” adds Intelligence

The real problem that causes the unnecessary polling is a “lack of intelligence” between the
application and the SSH2/Telnet server. Ideally the best situation is for the application to
notify the SSH2/Telnet Server when new data is present at the Virtual Terminal. This would
eliminate the time spent polling for new data.

4 of 6

RF DTIO incorporates an intelligent mechanism for recognizing when new data is present

Let’s dive a little deeper into what happens when the application read/writes to the Virtual
Terminal. The application uses Operating System Application Programning Interfaces (API's)
to actually perform the reads and writes.

The Application calls Operating
System (OS) API’s to perform
Reads/Writes to the VT. There
are many different OS API’s that
may be called for Terminal I/O.
Each application may have its
own “favorite” API’s to use.

The Operating System
performs the actual Reads

and Writes to the VT.

APPLICATION

Virtual Terminal
READ API’s

Virtual Terminal
WRITE API’s

Operating
System

GSW RF DTIO Engine hooks/intercepts
all the calls to the operating system

Terminal I/O Read/Write API’s!
“Hooking/Intercepting” the

Terminal I/O API’s provides
RF DTIO with the
KNOWLEDGE

of every read/write that the
application performs to the VT

Virtual Terminal (VT)

with GSW RF DTIO

Standard Operation
without GSW RF DTIO

This is just
what’s needed!

CALL API’s

CALL API’s

APPLICATION

Virtual Terminal
READ API’s

Virtual Terminal
WRITE API’s

Operating
System GSW

Directed
Terminal

I/O Engine

CALL API’s

 Performance White Paper

GSW RF Directed Terminal I/O Engine

PageDate: November 21, 2006 Georgia SoftWorks Tel: 706.265.1018 Email: sales@georgiasoftworks.com

Since the RF DTIO “hooks” all Console I/O API’s it already has the knowledge every time the
application reads or writes data to the Virtual Terminal. Two main cases to review are when
the application Read and when the application Writes.

First, let’s look at what happens when the application performs a write. When the application
writes (1) to the Virtual Terminal, RF DTIO recognizes (2) the event and sets (3) the Trigger
Delay Timer. The trigger delay timer is set because in most cases, applications will write
several times before the screen is complete. The timer prevents thrashing by reading too soon
and having to read again and again. When the Trigger Delay Timer expires (4) the SSH2/
Telnet Server is notified that data is present on the Virtual Terminal. Upon notification the
SSH2/Telnet (5) reads (scans) the Virtual Terminal. Next, the data is sent (6) to the terminal.

5 of 6

RF DTIO uses this intelligence to notify the SSH2/Telnet Server that data is present.

The performance improvement in many environments is
nothing short of amazing.

With new intelligence provided by RF DTIO Engine, unnecessary polling/scanning for new data is
eliminated. When the application is launched, it is launched by RF DTIO . This allows GSW RF
DTIO Engine to “hook” all console I/O API’s that the application needs to write/read to the Virtual
Terminal.

Virtual Terminal (VT)

1. Application WRITES data to the
Virtual Terminal

5. Read Every
Location on the
Virtual Terminal

6. Send any data to
the terminal

SSH2/TELNET
SERVER

3. Set Internal
Trigger Delay Timer

4. Timer
Expires

APPLICATION

Virtual Terminal
READ API’s

Virtual Terminal
WRITE API’s

Operating
System GSW

Directed
Terminal

I/O Engine

2. RF DTIO Recognizes a Write event.

RF DTIO Engine Intelligent Write
Recognizes when New Data is Present at the Virtual Terminal

CALL API’s

 Performance White Paper

GSW RF Directed Terminal I/O Engine

PageDate: November 21, 2006 Georgia SoftWorks Tel: 706.265.1018 Email: sales@georgiasoftworks.com

Virtual Terminal (VT)

Let’s look at what happens when the application performs a read. Usually (but not always)
when an application’s writes are complete, a read is performed to see if there is a response
from the operator. If the application performs a read after completing screen updates then RF
DTIO can be optionally configured to provide further performance gains.

Knowing that an application always performs reads after screen writes allows further
optimization such as described here. When the application Reads (1) from the Virtual
Terminal, RF DTIO recognizes (2) this event and immediately notifies (3) the SSH2/Telnet
Server that data is present on the Virtual Terminal. No timers are set! Upon notification the
SSH2/Telnet (4) immediately reads (scans) the Virtual Terminal Next, the data is sent (5) to
the terminal.

Note: Some applications have scenarios that do not perform a read after it is done writing. For
example, the application may write a message such as “Processing” to the VT while handling
intense database lookups (or other time consuming operations) to inform the operator that they
have to wait a little longer before the next screen is displayed. Since the application is not
waiting on data from the operator a read may not be performed. In this case RF DTIO would
not recognize new data until an internal timer fires.

6 of 6

4. Read Every
Location on the
Virtual Terminal

5. Send any data to
the terminal

SSH2/TELNET
SERVER

1: Application Reads data from the Virtual Terminal

APPLICATION

Virtual Terminal
READ API’s

Virtual Terminal
WRITE API’s

Operating
System GSW

Directed
Terminal

I/O Engine
3. Notifies SSH2/Telnet
Server to Read NOW!

2: RF DTIO Recognizes a Read event

Another area of potential performance gain is when the application performs a Read.

Even further performance improvements are possible in many
environments with configuration options!

RF DTIO Engine Intelligent READ
Recognizes when New Data is Present at the Virtual Terminal

