Keep it Secure – Simply

User’s Guide
WARNING: This program is not designed to support applications that are not specifically developed for secure use of the SSH protocol. It is your responsibility to ensure that any applications you wish to run are correctly configured and tested for security.

This program is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to the implied warranties of merchantability and fitness for a particular purpose.

Licensor makes no warranties or representations, express or implied, oral or written, regarding the program or documentation and hereby expressly disclaims all other express or implied warranties, including merchantability and fitness for a particular purpose. Licensor does not warrant the program will meet your requirements or that its operation will be uninterrupted or error free.

In no event will Georgia SoftWorks be liable to you for any damages, including any lost profits, lost savings or other incidental or consequential damages arising out of the use or inability to use such programs.

COPYING:

While you are permitted to make backup copies of the software for your own use and protection, you are not permitted to make copies for the use of anyone else.

LICENSE:

Table of Contents

FEATURES AT A GLANCE

OVERVIEW

EASE OF USE

COMPONENT ARCHITECTURE

INSTALLATION

OVERVIEW

PROCEDURE

REGISTRATION

Registration via Software Serial Number

How to Register the Software

Floating License - Overview

Floating License – Hardware Key Installation Instructions

Uninstall Floating License – (Hardware Key)

GSW SSH Server

GSW FIPS 140-2 Compliant Option

Software Requirements

Enable Option

Enable FIPS 140-2 on SSH Server

Enable FIPS 140-2 on GSW Mobile/CE and Desktop Clients

FIPS 140-2 Connections

Configuration

Registry Key Locations

Allow User to Use SCP Channel

Allow User to Start a Remote Shell

Allow User to Use SFTP Subsystem

Specify the SFTP and SCP Root Folder

Specify UNC Path for SFTP and SCP

Allow User Certificate Logon

Allow User Public Key Logon

Allow User Name/Password Logon

Allow User GSSAPI Logon

Listen on IPv4 Interfaces

Listen on IPv6 Interfaces

Allow Use of the “Exec” Channel

Enable RSA Host Key

Enable DSA Host Key

Enable ECDSA Host Key

Encryption Algorithm Categories and Lists Overview

Specify Key Exchange Algorithms

Specify Ciphers

Specify Message Authentication Code Algorithms (MACs)

Algorithm Selection for GSW Desktop SSH Client

Host Key Algorithms List

Key Exchange Algorithm List

SSH SERVER FOLDER LAYOUT...115
SYSTEM SIGNATURE - IMPORTANT PLEASE READ ...117
TECHNICAL SUPPORT ...118
 PROVIDE LOG FILES TO GSW TECHNICAL SUPPORT...118
Table of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GSW Server Products Block Diagram</td>
</tr>
<tr>
<td>2</td>
<td>GSW Telnet Server Block Diagram</td>
</tr>
<tr>
<td>3</td>
<td>GSW SSH Server Block Diagram</td>
</tr>
<tr>
<td>4</td>
<td>Installation Welcome Screen</td>
</tr>
<tr>
<td>5</td>
<td>Installation – Choose Destination Folder</td>
</tr>
<tr>
<td>6</td>
<td>Installation – Command Shell Status Lines</td>
</tr>
<tr>
<td>7</td>
<td>Installation Complete</td>
</tr>
<tr>
<td>8</td>
<td>GSW UTS Program Group</td>
</tr>
<tr>
<td>9</td>
<td>SSH Installation Status (Your version will be shown in the fields above)</td>
</tr>
<tr>
<td>10</td>
<td>Registration – SSH Shield is not registered for use</td>
</tr>
<tr>
<td>11</td>
<td>GSW Registration - Initial Screen</td>
</tr>
<tr>
<td>12</td>
<td>Registration - Serial Number Applied</td>
</tr>
<tr>
<td>13</td>
<td>Registration Successful Screen</td>
</tr>
<tr>
<td>14</td>
<td>Registration Verification</td>
</tr>
<tr>
<td>15</td>
<td>Registration - Verify that FIPS 140-2 is Enabled</td>
</tr>
<tr>
<td>16</td>
<td>Floating License – Parallel Port</td>
</tr>
<tr>
<td>17</td>
<td>Floating License – USB Port</td>
</tr>
<tr>
<td>18</td>
<td>Floating License – Hardware Key</td>
</tr>
<tr>
<td>19</td>
<td>User Account Control</td>
</tr>
<tr>
<td>20</td>
<td>SafeNet welcome screen - computing space requirements</td>
</tr>
<tr>
<td>21</td>
<td>SafeNet welcome screen - second part</td>
</tr>
<tr>
<td>22</td>
<td>SafeNet License Agreement</td>
</tr>
<tr>
<td>23</td>
<td>SafeNet License Agreement - Read and Accept</td>
</tr>
<tr>
<td>24</td>
<td>SafeNet – Ready to Install</td>
</tr>
<tr>
<td>25</td>
<td>SafeNet Validating Install</td>
</tr>
<tr>
<td>26</td>
<td>SafeNet Successful Installation</td>
</tr>
<tr>
<td>27</td>
<td>GSW Software Installation Status Tool</td>
</tr>
<tr>
<td>28</td>
<td>Control Panel - GSW SSH Services Started</td>
</tr>
<tr>
<td>29</td>
<td>GSW True FIPS 140-2 Connection – Server and Client</td>
</tr>
<tr>
<td>30</td>
<td>FIPS 140-2 Option Enabled</td>
</tr>
<tr>
<td>31</td>
<td>Desktop Client "1" option issued</td>
</tr>
<tr>
<td>32</td>
<td>Enable FIPS 140-2 on GSW Mobile Clients</td>
</tr>
<tr>
<td>33</td>
<td>Verify FIPS 140-2 Compliant Connections</td>
</tr>
<tr>
<td>34</td>
<td>SSH Certificate Mapping Tool</td>
</tr>
<tr>
<td>35</td>
<td>One-to-one certificate mapping</td>
</tr>
<tr>
<td>36</td>
<td>Many-to-one certificate mapping</td>
</tr>
<tr>
<td>37</td>
<td>Public Key Mappings - 1-to-1</td>
</tr>
<tr>
<td>38</td>
<td>Certificate Validation Certificate Trust List</td>
</tr>
<tr>
<td>39</td>
<td>Puttygen Tool for Creating Public/Private Key Pair</td>
</tr>
<tr>
<td>40</td>
<td>Puttygen Tool Uses Mouse-Movement to Create Randomness for Key Creation</td>
</tr>
<tr>
<td>41</td>
<td>Puttygen with Generated Key</td>
</tr>
<tr>
<td>42</td>
<td>Certificate Mapping Tool</td>
</tr>
<tr>
<td>43</td>
<td>Mapping an Account to a Public Key</td>
</tr>
<tr>
<td>44</td>
<td>Certificate Mapping Tool – Public Key Mappings</td>
</tr>
<tr>
<td>45</td>
<td>Certificate Mapping Tool – Public Key Mappings Dialogue Box</td>
</tr>
<tr>
<td>46</td>
<td>Opening the Client on a Device to Set-up Public Key Log-on</td>
</tr>
<tr>
<td>47</td>
<td>Selecting a Connection profile</td>
</tr>
<tr>
<td>48</td>
<td>Selecting Options on GSW SSH2 Client to Configure Public Key Log-on</td>
</tr>
<tr>
<td>49</td>
<td>Selecting Public Key Log-on</td>
</tr>
<tr>
<td>50</td>
<td>Configuring Public Key Log-on</td>
</tr>
<tr>
<td>51</td>
<td>Configuring the Client by Providing a Private Key</td>
</tr>
<tr>
<td>52</td>
<td>Browsing to Find Private Key</td>
</tr>
<tr>
<td>53</td>
<td>Private Key Imported into Client</td>
</tr>
<tr>
<td>54</td>
<td>Client Launch Using Public / Private Key Authentication</td>
</tr>
<tr>
<td>55</td>
<td>Session Connected via Public / Private Key Authentication</td>
</tr>
<tr>
<td>56</td>
<td>GSW SSH Desktop Client</td>
</tr>
<tr>
<td>57</td>
<td>GSW PPC 2003 Client</td>
</tr>
<tr>
<td>58</td>
<td>GSW PPC 2003 Client – Options</td>
</tr>
<tr>
<td>59</td>
<td>GSW PPC 2003 Client - SAPConsole - SSH</td>
</tr>
<tr>
<td>60</td>
<td>Psion-Tellogix Initial Screen</td>
</tr>
<tr>
<td>61</td>
<td>Psion-Tellogix – Session Menu Items</td>
</tr>
</tbody>
</table>
Table of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>GSW Software versions required for FIPS 140-2</td>
<td>39</td>
</tr>
<tr>
<td>Table 2</td>
<td>Device Operating System Versions Required for FIPS 140-2</td>
<td>39</td>
</tr>
<tr>
<td>Table 3</td>
<td>GSW Desktop Host Key Algorithms</td>
<td>62</td>
</tr>
<tr>
<td>Table 4</td>
<td>GSW Desktop Key Exchange Algorithms</td>
<td>63</td>
</tr>
<tr>
<td>Table 5</td>
<td>GSW Desktop Ciphers - SSH and with FIPS 140-2</td>
<td>64</td>
</tr>
<tr>
<td>Table 6</td>
<td>GSW Desktop MACs both SSH and FIPS 140-2</td>
<td>65</td>
</tr>
<tr>
<td>Table 7</td>
<td>GSW SSH Client Platforms</td>
<td>95</td>
</tr>
<tr>
<td>Table 8</td>
<td>SSH Host Key and Key Exchange Algorithms</td>
<td>108</td>
</tr>
<tr>
<td>Table 9</td>
<td>SSH Ciphers</td>
<td>109</td>
</tr>
<tr>
<td>Table 10</td>
<td>SSH HMACs</td>
<td>110</td>
</tr>
<tr>
<td>Table 11</td>
<td>SSH Public Key Algorithms</td>
<td>110</td>
</tr>
<tr>
<td>Table 12</td>
<td>SSH Compression</td>
<td>111</td>
</tr>
<tr>
<td>Table 13</td>
<td>FIPS 140-2 certificate links</td>
<td>112</td>
</tr>
<tr>
<td>Table 14</td>
<td>Version Upgrade Pricing with GSW Subscription Plan</td>
<td>113</td>
</tr>
<tr>
<td>Table 15</td>
<td>Version Upgrade Pricing Without Subscription Plan</td>
<td>113</td>
</tr>
<tr>
<td>Table 16</td>
<td>Steps to Renew the GSW Subscription Plan</td>
<td>114</td>
</tr>
</tbody>
</table>
Typographic Conventions

Italics: are used to emphasize certain words, especially new terms or phrases when they are introduced.

Initial Caps Bold: Words that appear in initial caps boldface represent menu options, buttons, icons or any object that you may click.

Courier: This font represents anything you must type.

"*<enter>*" This represents the enter key.

Terms/Abbreviations

UTS
GSW Universal Terminal Server

SSH
Secure Shell Version 2
Always refers to SSH version 2 (SSHv2) except where noted

SSH SHIELD
This is the application and interface installer for the GSW SSHv2 Interface

SSH SHIELD Certificate Mapping Tool
This is the GSW GUI tool that is used when configuration and managing the mapping of Digital Certificates, Public Keys and CTL’s. Often called the GSW Mapping Tool or GSW Certificate Mapping Tool.

Telnet Server
Unless noted otherwise this refers to the GSW UTS with the default Telnet Protocol

Windows
Refers to Microsoft Windows Operating Systems 10/8/7 and Windows Server 2008/R2/2012/R2/2016 unless otherwise noted.
Features at a Glance

<table>
<thead>
<tr>
<th>Georgia SoftWorks SSH Server</th>
</tr>
</thead>
</table>
| - Complete Data Stream Encryption
 AES-256, ‘chacha20-poly1305@openssh.com’, and the strongest modern ciphers supported (see below) |
| - Easy to Install and Use
 Defaults provide strong encryption
 No Certificate provision required (However, available if you want it) |
| - Automatic Generation and installation of RSA, DSA and ECDSA Host Keys |
| - Host Fingerprints file holds key fingerprints for all host keys offered for server-to-client authentication. |
| - FIPS 140-2 Compliant Option |
| - IPv6 Support |
| - Integrated with GSW UTS feature set including GUI Configuration Tool |
| - Perfect Support for ALL PC Keys and International Characters |
| - GSW companion product - GSW ConnectBot is an SSH client for Android, and the most secure commercial SSH client available. |
Elliptic Curve Cryptography Support for

- Server-to-client authentication
- Key Exchange
- Public key authentication

Host Key types
- 'rsa-sha2-512'
- 'rsa-sha2-256'
- 'ecdsa-sha2-nistp521'
- 'ssh-rsa'
- 'ssh-dss'

Key Exchange algorithm
- 'curve25519-sha256@libssh.org'
- 'curve25519-sha256'
- 'diffie-hellman-group-exchange-sha256'
- 'diffie-hellman-group14-sha256'
- 'diffie-hellman-group16-sha512'
- 'diffie-hellman-group19-sha512'
- 'ecdh-sha2-nistp521'
- 'ecdh-sha2-nistp384'
- 'ecdh-sha2-nistp256'
- 'ext-info-o'
- 'diffie-hellman-group-exchange-sha1'
- 'diffie-hellman-group14-sha1'
- 'diffie-hellman-group1-sha1'

HMAC algorithms
- 'hmac-sha2-512-etm@openssh.com'
- 'hmac-sha2-516-etm@openssh.com'
- 'hmac-sha2-512'
- 'hmac-sha2-256'
- 'hmac-sha1'
- 'hmac-sha1-96'
- 'hmac-md5'
- 'hmac-sha1-etm@openssh.com'

Ciphers
- 'chacha20-poly1305@openssh.com'
- 'aes256-gcm@openssh.com'
- 'aes128-gcm@openssh.com'
- 'aes256-ctr'
- 'aes256-cbc'
- 'aes192-cbc'
- 'aes256-gcm@openssh.com'
- 'aes256-ctr'
- '3des-ctr'
- '3des-cbc'
- 'blowfish-cbc'
- 'rijndael256-cbc'
- 'rijndael192-cbc'
- 'rijndael128-cbc'
- 'rijndael-cbc@lysator.liu.se'
- 'cast128-cbc'

1 Ciphers - aes256-ctr when used with hmac-sha2-256-etm@openssh.com or hmac-sha2-512-etm@openssh.com

2 Ciphers - aes128-ctr when used with hmac-sha2-256-etm@openssh.com or hmac-sha2-512-etm@openssh.com

3 Ciphers - aes192-ctr when used with hmac-sha2-256-etm@openssh.com or hmac-sha2-512-etm@openssh.com

4 Ciphers - 3des-ctr when used with hmac-sha2-256-etm@openssh.com or hmac-sha2-512-etm@openssh.com
Plus GSW Digital Certificate Based Authentication

- Public Key Authentication with Microsoft IIS like certificate to user account mapping
- ‘One-to-one’ and ‘Many-to-one’ mapping methods that also support certificate trust lists (CTL).
- Certificate mapping tool also supports public key to user account mapping
- Single Sign On through NTLM and Keberos over GSSAPI (‘gssapi-with-mic’)
- Certificate based authentication through:
 - ‘x509v3-sign-rsa’ and ‘x509-sign-dss’ public key authentication standards
 - Integrated with the Microsoft Certificate Stores
Overview

The GSW Secure Shell (SSH) Server provides Secure Remote Access to your Windows Host including Secure Remote Logon, Data Exchange, and Access to your Application on an Insecure Network

Thank you for purchasing the Georgia SoftWorks (GSW) SSH Server for Windows Server 2016/2012/R2/2008/R2 and Windows 10/8/7. The GSW SSH Server provides unparalleled performance and includes the powerful features needed to achieve operational objectives in demanding commercial and industrial environments. The growing concern that sensitive data must not be available to unauthorized third parties demands that a client can securely access the remote server. This is especially important for RF access to a server.

Strong “End-to-End” encryption is employed with the GSW SSH Server. No clear text username and passwords are transmitted across the network. No clear text application data is transmitted across the network. All the data is encrypted using the strongest encryption available to provide complete confidentiality.

A Federal Information Processing Standards Publication (FIPS) 140-2 compliant option is available and may be purchased for the GSW SSH Server. This standard specifies the security requirements that will be satisfied by a cryptographic module utilized within a security system protecting sensitive or valuable data. This option is available to Federal agencies, including the US Military. The option is also available for purchase by other organizations such as state governments, educational and research institutions, commercial businesses and other entities with the need or desire to comply with this security requirement for cryptographic modules standard.

The GSW SSH Server is useful in a wide variety of environments that require Secure Remote Access and Strong Encryption that include:

- RF Application, Barcode Scanner, etc. (Warehousing, Inventory, Medical, etc.)
- SAP AG’s SAPConsole
- HighJump, QAD and more
- Application Service Providers (ASP), Legacy Applications
- System Administration, Software Development and more!
- The GSW Business Tunnel is an excellent client application for the GSW SSH Server providing secure web browsing, email access, RDP and much more.
The GSW SSH provides SSH (SSH version 2) operation rather than the older iteration SSH1 (SSH version 1) operation. In addition to being faster, smaller and more flexible, SSH provides significant security improvements. Even though SSH1 implementations exist, they are becoming fewer and are usually not recommended. GSW has chosen to provide the strongest, fastest and version of SSH – SSHv2.

An extremely important aspect of the GSW SSH Server is the ease of installation. Complex and lengthy security configuration has been either eliminated or reduced to a minimum in order to get your application up and running fast without forsaking performance or compromising desired security. You do not have the administrative complexity of public/private keys and certificates when using the GSW SSH Server default settings.

Secure Remote Login, Secure Access to the Application and ensuring Data Integrity are the primary areas for concern when securing an application and the GSW SSH Server is optimized to address these needs.

Strong Authentication

The GSW SSH Server offers the Strongest Authentication features available for Windows.

In addition to User Name/Password Authentication, the GSW SSH Server for Windows offers Public Key Authentication with a GUI Internet Information Server (IIS) like certificate to user account mapping. This includes ‘One-to-one’ and ‘Many-to-one’ mapping methods and also supports certificate trusts lists (CTL). This mapping works with all user accounts including accounts defined in the Active Directory. Additionally the GSW GUI mapping tool allows public key to user account mapping.

To learn more about GSW Digital Certificate Based Authentication, please visit the GSW website:

Secure Remote Login

The GSW SSH Server only allows connections from SSH clients. This ensures that all user data is encrypted prior to leaving the local client device. The data is decrypted at the remote GSW SSH Server. This includes authentication data such as the username and password that is required to login to the remote server. The encryption is transparent, and thus the user will not perceive much, if any, variance between operation of a telnet and SSH client.

The SSH connection ensures that the Login and Authentication data is encrypted so that a malicious party cannot intercept the sensitive information.
Secure Access to Your Application (Secure Data Exchange)

Since the connection between the SSH client and the GSW SSH Server is encrypted, the data transmitted is not readable by unauthorized parties. When the User is authenticated, a shell is started (cmd.exe), where the user can perform remote command execution or start applications. All data transmitted between the client and the server is encrypted. No one can “snoop” the connection and intercept clear text data because none exists!

Data Integrity

Data Integrity is essential for secure data exchange. The data received must be exactly the same as the data sent; otherwise an unauthorized party may have modified the data during the transmission. The SSH Transport layer ensures that the data received has not been modified from the data sent. This is accomplished by including a message authentication code (MAC) with each packet transmitted. The MAC is determined prior to encryption using the contents of the packet, a “Shared Secret” between the SSH client and SSH server and a packet sequence number.
Ease of Use

Many of the complex and lengthy configurations issues are automatically defined by the GSW SSH Server. It has been observed that an overwhelming majority of customers do not need nor desire to set every possible option available for SSH Security.

Most customers want the strongest security that is practical to implement. Through much dialog with our resellers and customers who use RF environments a main theme emerged. The requirement to “Keep it secure – simply” was paramount.

The installation of the GSW SSH Server is very quick. You will have users connecting with the security of powerful SSH encryption much sooner than expected.

- **No Encryption Method has to be specified.**
 Many environments must ensure that the Windows Username and Password are encrypted as well as the data. GSW SSH Server provides complete confidentiality by defaulting to a very strong encryption method.

The GSW SSH Server defaults to the following:

Host Key Algorithms: rsa-sha2-512, rsa-sha2-256, ecdsa-sha2-nistp521, ssh-rsa, ssh-dss

Ciphers: aes256-gcm@openssh.com, chacha20-poly1305@openssh.com, aes256-ctr, aes192-ctr, 3des-cbc, aes128-ctr, aes128-gcm@openssh.com, aes256-cbc, rijndael1256-cbc, rijndael-cbc@lysator.liu.se, aes192-cbc, rijndael192-cbc, aes128-cbc, rijndael128-cbc, cast128-cbc, blowfish-cbc

MACs: hmac-sha2-512-etm@openssh.com, hmac-sha2-256-etm@openssh.com, hmac-sha2-512, hmac-sha2-256, hmac-shal-etm@openssh.com, hmac-shal, hmac-sha1, hmac-md5, none

Public Key Algorithms: rsa-sha2-512, rsa-sha2-256, ssh-ed-25519, ssh-rsa, ssh-dss

AES-256 is the generally accepted strongest encryption standard offered by SSH – it is the Advanced Encryption Standard using a 256 bits cryptographic key. This is also known as the Rijndael algorithm which is a symmetric block cipher capable of using cipher keys that have 128, 192 and 256 bit lengths to process data blocks of 128 bits.
The GSW SSH server can be configured to refuse a connection if the SSH client cannot operate with AES-256. Weaker encryptions only compromise the security of the connection so **only the strongest encryption can be configured** to ensure the strongest protection - while maintaining exceptional performance. AES-256 encryption is available on almost all SSH clients. Of course other encryptions are supported such as 3DES. The GSW SSH Server will negotiate with the client to agree on the algorithm unless configured otherwise.

- **No manual installation of certificates needed**

 Additionally, it has been identified that in many cases the administrative requirements for public and private certificate installation are not needed or desired. Using traditional, manual methods the installation of certificates on RF devices can be complex and cumbersome. No public/private key generation or administration is required.

 However, those with the requirements can take full advantage of the security offered by Digital Certificates and Public Keys using the innovative and easy to use SSH Shield Certificate Mapping Tool.

Component Architecture

The GSW SSH is composed of:

- The GSW Universal Terminal Server (UTS)
- The GSW SSH Shield

The GSW UTS is the software module that contains the core software for the GSW Server products, and the majority of the Advanced Features for the GSW Server Products.

![Figure 1: GSW Server Products Block Diagram](image)
The GSW UTS standard option for the Protocol and Interface is the Telnet Interface. This configuration is marketed and sold as the GSW Telnet Server.

![Figure 2: GSW Telnet Server Block Diagram](image)

The GSW UTS SSH interface is installed by applying the GSW SSH Shield to the GSW UTS. The GSW SSH Shield disconnects the Telnet Protocol Interface and installs the SSH Interface. This configuration is marketed and sold as the GSW SSH Server.

![Figure 3: GSW SSH Server Block Diagram](image)
Installation

Overview
When you purchased the GSW SSH Server you either:

a. Own a GSW Telnet Server (UTS) and are upgrading to the SSH Server
 OR
b. A new customer purchasing the GSW SSH Server.

If you own a GSW Telnet Server and are upgrading to the SSH Server then:
 a. You must have GSW Telnet Server Version 6.50 or higher to install the SSH Shield. The Telnet Interface becomes disabled when the SSH Shield is installed. If you have an older version then you will need to upgrade to the Version 6.50 or higher before you can apply the SSH Shield.
 b. Next install the GSW SSH Shield
 c. Register the GSW SSH Server.

If you are purchasing a new GSW SSH Server then:
 a. You will receive the current version of the GSW Telnet Server. Install the GSW Telnet Server according to the Installation Instruction in the GSW UTS User Manual. You do not need to register the Telnet Server at this time. Registration takes place after the installation of the GSW SSH Shield.
 b. Next install the GSW SSH Shield
 c. Register the GSW SSH Server.

NOTE: The GSW SSH Server requires registration. The registration for the GSW UTS is not sufficient for the GSW SSH Server.

In conjunction with the GSW UTS Server
Procedure

Installation of the GSW SSH Server software is simple and quick. From Windows 7/8/2008/R2/2012/R2/2016, NT/XP/VISTA/2000/2003, perform the following:

1. Run the setup program (sshshld.exe). The Welcome screen of the setup program is displayed and you are reminded and urged to exit all windows programs before continuing. You are also reminded that you must have administrative privileges to install this program. Click Next.

![Figure 4: Installation Welcome Screen](image-url)
1. A screen is displayed indicating the folder where the GSW SSH Shield will be installed. The default is:

C:\Program Files\Georgia SoftWorks\Georgia SoftWorks SSH SHIELD.

You may change the installation directory at this time. Note: Make sure that the users of the SSH Server have full access to the installation directory.

Select the Program Folder for the SSH Server. Click Next.
2. A shell opens a window with installation status lines similar to the figure below.

![Installation Status Lines](image)

Figure 6: Installation – Command Shell Status Lines

3. Now the Setup is complete! Click Finish and *Now it’s time to register the SSH Server!*
Please view the `readme.txt` file as it may contain late breaking information about the SSH Server that has not yet made it into the User Manual. Release notes are also contained in the `readme.txt` file.

Installation will result in the Georgia SoftWorks program group item “Installation Status” showing GSW SSH as installed. Additionally, the version of the GSW SSH Shield is displayed along with the status of the server and other Georgia SoftWorks software that may be installed.
Registration

The GSW SSH Server is licensed for a single server. The license must be activated for the software to operate. To activate the license a valid Serial Number is required and is examined periodically by the SSH Server software. The Serial Number also allows new versions to be downloaded and installed for the duration of your subscription plan.

Two methods exist to obtain a valid Serial Number.

1. Registration via Software Serial Number.
 This method exists for environments that do not support Parallel or USB ports. In brief this entails providing GSW with a machine specific Product ID. A Serial Number is generated based on the Product ID. This is usually performed via the GSW Ticket System, however is some cases email, fax or telephone. See page 25 for details on Software registration.

2. Registration via Floating License
 The Serial Number is pre-programmed into a specific hardware key that came with your purchase. The hardware key connects to a parallel or USB port on the server. See page 25 for details on registration via the Floating License.

Registration via Software Serial Number

To run the GSW SSH Server you must first register the software. (This registration is NOT required if you installed the Floating License, Page 25) Registration via Software Serial Number entails just a few steps that involve obtaining the Product ID and providing this Identification to Georgia SoftWorks so a Serial Number can be generated. Georgia SoftWorks will provide you with the Serial Number based on the Product ID. When you enter the Serial Number into the Registration Tool, click Register.

NOTE: Read System Signature chapter at the end of manual (page 117).

How to Register the Software

To run the registration software -

- Select the Start button on the task bar; select Programs, then Georgia SoftWorks UTS Server and right click on Registration and Run as Administrator.

Prior to registering the SSH Server, a reminder dialog is presented indicating that the SSH Shield is not registered.

![GSW Registration Tool]

Your Software Registration data indicates the GSW SSH Shield is installed but is not registered for use.

OK
The GSW SSH Server will be fully functional for a Trial Period of 30 days without requiring registering when installed for the first time on a system. *Click OK*

IMPORTANT NOTE: If you already own a GSW Telnet Server and you want to run a 30 day trial of the GSW SSH Server then you will need to request a 30 day trial serial number from Georgia SoftWorks. Please save a copy of the current SERIAL NUMBER for your telnet server prior to installing a 30 day trial GSW SSH Server. In the event that you do not purchase the GSW SSH Server prior to the expiration of the trial, you will need to apply your original serial number to re-activate the original GSW Telnet Server.
Next, the registration screen is displayed. The Registration program automatically fills in the Product Information fields as shown in the figure below. Complete the Customer Information fields as shown in the figure below.

Note: The Product Information *Name* and *Version* must contain valid data or it will not generate a correct Product ID.

![GSW Registration Tool](image)

Figure 11: GSW Registration - Initial Screen

Note that the Customer Information and Serial Number in the Registration Information may be already filled. This will be the case if the GSW UTS has previously been registered and operating as the GSW Telnet Server.

The registration information must be provided to Georgia SoftWorks to obtain the Serial Number. Several methods are available for your convenience.

1. Please complete the *Customer Information*, including the *Purchased From* and the *Application software* fields in the Registration Screen.

The registration information must be provided to Georgia SoftWorks to obtain the Serial Number. Several methods are available for your convenience.

OR

1. Email the file to registration@georgiasoftworks.com

Once Georgia SoftWorks receives the information, we can generate a Serial Number on demand and will send it to you. You may close the registration program at this time.

3. When the Serial Number is provided run the Registration Program (see page 25) again and enter the Serial Number. The easiest method to get the serial number is to highlight the returned Serial Number and copy (**ctrl-c**). Then position the mouse in the Serial Number field in the Registration Information box and paste (**ctrl-v**).

![Figure 12: Registration - Serial Number Applied](image)
4. Click **Register**.

![Figure 13: Registration Successful Screen](image)

5. Click **OK**.

Now the software is registered.

You will notice that in this case the Parameter field in the registration form is set to 3000, SSH Shield. This indicates that the SSH Server is installed and registered and is enabled for 3000 sessions.

![Figure 14: Registration Verification](image)
If you have purchased the Federal Information Processing Standards Publications (FIPS 140-2) option, you can verify that it is enabled by viewing the registration screen as shown below in Figure 15. Please note that the GSW SSH Server must be installed for the FIPS option to be available. GSW True FIPS 140-2 compliant connections can be identified using the GSW Session Administrator in the GSW UTS Server. Please see the GSW UTS Users Guide for further details.

![Figure 15: Registration - Verify that FIPS 140-2 is Enabled](Image)

IMPORTANT: READ SYSTEM SIGNATURE CHAPTER AT END OF MANUAL (page 117).

You may now run the Georgia SoftWorks SSH Server. Note that you will be able to obtain Free Updates until the date specified.

Floating License – Overview
The Georgia SoftWorks Floating License provides the flexibility to rapidly move the GSW SSH Server from one machine to another. *If you are unable to use the Floating License - skip this section and go to the section on Registration via Software Serial Number on page 25.*

NOTE: When a SSH Server Pack is purchased (SSH Server and GSW Telnet Server), the same physical Floating License will contain valid Serial Numbers for both products.

With the Floating License **NO** software registration is required for the SSH Server to operate.

Common scenarios where the Floating License is useful include:
- **Laboratory usage in a development or test environment** where the SSH Server is required for short periods of time on any particular machine and then moved to a new machine.

- **Backup Servers in a production environment.** Typically multiple SSH Servers are purchased for backup systems, however with a Floating License the Hardware Key can be quickly moved from the primary machine to the backup without any other registration requirements.

- **Environments where a failed server must be replaced or rebuilt and immediately restored to operation with full SSH Server capability.**

The Georgia SoftWorks Floating License is a hardware key that connects to a *female* parallel port connector or USB Port on the server. The parallel port Floating License does not impact functionality of the port for other uses. The parallel hardware key acts as a pass-through allowing normal connections to the other side of the key.

The Georgia SoftWorks Floating License is a hardware key that can be ordered for a Parallel or USB Port.

<table>
<thead>
<tr>
<th>Parallel Port Floating License</th>
<th>USB Floating License</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Parallel Port Floating License is a Pass Through allowing normal function of the port.

The Parallel Port Floating License connects to a *female* parallel port on the server and does not impact functionality of the port for other uses. It acts as a pass though allowing normal connections to the other side of the key.

The SSH Server will recognize the presence of the key and activate the software with the proper date for which free version upgrades can be obtained. It does not matter which parallel or USB port on the server the Hardware Key is installed, as all ports will be scanned for the installation of the key.

The Floating License currently is installed using the manufacturer SafeNet, previously Aladdin of the hardware key’s setup program. It is described below. The name of the hardware key is HASPHL and you will see it displayed in the setup screens. The best drivers for the HASP4 are the HASP HL drivers.
Floating License – Hardware Key Installation Instructions

Note: If you are using a *USB Floating License on a Windows NT system* - run the file aksnt4usb.exe prior to the following steps.

Note: Install the Floating License drivers before plugging into the USB port.

1. Copy the files from the Floating License folder (hardkey) on the provided CD to the hard drive on your server.

2. Run the HASPUserSetup.exe program and follow the installation instructions. After installation of the hardware key install the GSW SSH Server as described on page 20 (if it is not already installed).

3. If you have User Account Control enabled you may get a prompt that says “Do you want to allow the following program to make changes to this computer?” Click Yes

![User Account Control](image-url)

Figure 19: User Account Control
4. You will first see the SafeNet (formerly Aladdin) initial Welcome Screen.

![SafeNet welcome screen - computing space requirements](image)

Figure 20: SafeNet welcome screen - computing space requirements

5. You will first see the SafeNet complete Welcome Screen, **Click Next**

![SafeNet welcome screen - second part](image)

Figure 21: SafeNet welcome screen - second part
6. The next screen displayed is the SafeNet License Agreement screen.

![Figure 22: SafeNet License Agreement](image)

7. Read the license agreement and select “I accept the license agreement”, and then **Click Install**.

![Figure 23: SafeNet License Agreement - Read and Accept](image)
8. The SafeNet Ready to install screen is displayed. Click **Next**.

![Figure 24: SafeNet – Ready to Install](image)

9. The SafeNet Updating System screen is displayed.

![Figure 25: SafeNet Validating Install](image)
10. The SafeNet Successfully Installed Screen is displayed. Click Finish.

![SafeNet Successful Installation](image)

Figure 26: SafeNet Successful Installation

11. Plug the hardware key onto the parallel or USB port on the server.

 NOTE: On some systems you may have to reboot the server after installation. If the Floating License is not recognized (by the UTS) after installing the driver, please reboot the server.

Uninstall Floating License – (Hardware Key)

In the event that you need to uninstall the Floating License (SafeNet HaspHL) please use the Windows Control Panel Add/Remove Programs administrative utilities.

NOTE: Removing or uninstalling the Floating License will disable the GSW UTS Server.
GSW SSH Server

After Installation and Registration the GSW SSH Server is ready to use.

You can further configure the SSH Server to use more advanced features as needed. See page 44. Power configuration options for the SSH Server are implemented as common Universal Terminal Server configuration parameters. See User Manual for the GSW Universal Terminal Server for information on the powerful features available to the GSW SSH Server.

Using the Installation Status Program Item within Georgia SoftWorks UTS program group, you can view the Installation Status of the GSW UTS and SSH Server.

![GSW Software Installation Status](image)

Figure 27 - GSW Software Installation Status Tool
The Windows Services Utility can be used to view and alter the status of the GSW SSH and the GSW UTS services.

The Georgia SoftWorks GSW_SSHD service and the Georgia SoftWorks Universal Terminal Server should both have a status of Started and a Startup Type of Automatic.

Using the Windows Services utility is the recommended method to start and stop the GSW services when required.
GSW FIPS 140-2 Compliant Option

GSW provides a Federal Information Processing Standards Publication (FIPS) 140-2 compliant option for those entities with requirements to meet cryptographic module security standards to protect sensitive and valuable data. FIPS standards are either mandated or recommended for use in federal government information technology (IT) systems.

Georgia SoftWorks undertook a purposed and specific development effort in order to provide required FIPS 140-2 compliant SSH server and client software to the United States Military. Having completed this task, GSW is able to make this software available to other branches of the Federal government as well as State governments and other institutions including research, educational and commercial.

Software Requirements

In addition to the development required for FIPS 140-2 compliance of the GSW server and client software, the GSW mobile clients must run on an operating system that is FIPS 140-2 certified or provides a cryptographic module that has been certified.

In order for your SSH connections to be FIPS 140-2 compliant you must ensure that you have the minimum GSW software versions as well as the proper Windows Mobile/CE operating system version.

Software Requirements for FIPS Compliancy

<table>
<thead>
<tr>
<th>GSW Software</th>
<th>Version</th>
<th>Certificate</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSW UTS Server</td>
<td>7.50+</td>
<td>#918</td>
</tr>
<tr>
<td>GSW SSH Server</td>
<td>7.50+</td>
<td>#918</td>
</tr>
<tr>
<td>GSW Desktop Clients</td>
<td>7.50+</td>
<td>#918</td>
</tr>
<tr>
<td>GSW CE/Mobile Clients</td>
<td>7.50+</td>
<td>#560,#825</td>
</tr>
</tbody>
</table>

Table 1: GSW Software versions required for FIPS 140-2

<table>
<thead>
<tr>
<th>Required Device Operating System for Mobile/CE Clients</th>
<th>Certificate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows CE 5.0</td>
<td>#560</td>
</tr>
<tr>
<td>Depends on Vendor - Made available to OEMs via Windows Update 061211_KB911762</td>
<td></td>
</tr>
<tr>
<td>Windows Mobile 5.0</td>
<td>#560</td>
</tr>
<tr>
<td>Windows CE 6.0</td>
<td>#825</td>
</tr>
<tr>
<td>Windows Mobile 6.0+</td>
<td>#825</td>
</tr>
</tbody>
</table>

Table 2: Device Operating System Versions Required for FIPS 140-2

The significant aspect of the client device operating system is that the version of the cryptographic module rsaenh.dll must be NIST (National Institute of Standards and Technology) certified, which begins with build 14343.0.0. With Windows CE 5.0 extra attention should be taken to ensure the version of rsaenh.dll. This may require contacting the device vendor to determine the correct version number of that cryptographic module.
Enable Option
FIPS 140-2 must be enabled on both the GSW SSH server and the GSW clients to complete a FIPS 140-2 compliant connection.

A True GSW FIPS 140-2 connection is when both the Server and the Clients are FIPS 140-2 compliant and enabled.

Figure 29: GSW True FIPS 140-2 Connection – Server and Client

ENABLE FIPS 140-2 ON SSH SERVER
Proper registration will enable the FIPS option on the SSH Server. View the registration tool to ensure the GSW SSH Server is registered with the FIPS option enabled. Select the Start button on the task bar; select Programs, then Georgia SoftWorks UTS and then Registration. The current registration information is displayed.

![Registration Tool](image)

Figure 30: FIPS 140-2 Option Enabled

In the Parameter field you will observe the number of concurrent sessions allowed followed by the text “SSH Shield” indicating that the GSW SSH server is licensed and FIPS indicating that the FIPS 140-2 option is enabled.
ENABLE FIPS 140-2 ON GSW MOBILE/CE and DESKTOP CLIENTS

GSW Desktop Client

Use the “–i” command line parameter when launching on GSW Desktop clients to enable FIPS 140-2 option. Please see the UTS user’s guide for a description and examples of desktop client command line options.

When FIPS 140-2 enabled GSW desktop clients are launched you will receive a banner indicating that the “–i” command line parameter was issued by the client.

Please note that to have both ends (client and server) FIPS 140-2 compliant, FIPS 140-2 must be enabled on the GSW SSH Server too.
GSW Windows Mobile/CE Clients

Enable FIPS140-2 on GSW Mobile/CE clients via the Encryption list box. The Mobile/CE device screen that you see will be similar to the ones below.

![Figure 32: Enable FIPS 140-2 on GSW Mobile Clients](image)

Please note that to have both ends (client and server) FIPS 140-2 compliant, FIPS 140-2 must be enabled on the GSW SSH Server too.
FIPS 140-2 Connections

Using the UTS Session Administrator you can verify True GSW FIPS 140-2 compliant connections. An asterisk “*” will be prepended to the user name for connections that are FIPS 140-2 compliant for both the client and the server.

The possibility exists that a third party client may be FIPS 140-2 compliant but it cannot be verified unless it is a GSW client.

Figure 33: Verify FIPS 140-2 Compliant Connections
Configuration

No configuration is required beyond installation in order for the GSW SSH Server to operate providing secure logon, strong encryption and data integrity on an insecure network. Optional SSH Configuration is provided to implement advanced features. The GSW SSH Server reads configuration values each time the GSW_SSHD service is started.

Please consider the optional GSW UTS GUI Configuration tool for SSH provisioning or use the methods described below.

Registry Key Locations

Registry keys referenced in this User’s Guide are located here on 64 bit operating systems

HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Georgia SoftWorks\GSW_SSHD\Parameters

Registry keys referenced in this User’s Guide are located here on 32 bit operating systems

HKEY_LOCAL_MACHINE\SOFTWARE\Georgia SoftWorks\GSW_SSHD\Parameters

Allow user to use SCP channel

Allow/Disallow users using transfer files using the Secure Copy protocol. The use of the “scp channel” is defined as defined in the SSH Connection Protocol.

Example using PuTTy’s secure copy is:

```
pscp -l mike -pw (zPro2@@5) -2 -v tt.txt mike@gsw2003:pp.txt
```

You can Allow/Disallow this capability by modifying the following registry key.

This configuration is contained in the registry key bAllowServiceSCP. The key is:

```
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\GeorgiaSoftWorks\GSW_SSHD\Parameters\bAllowServiceSCP
```

The default value is 0x0 (Do not allow Secure Copy protocol). The value 1 allows the use of the Secure Copy Protocol.

Note that szSFTPRoot (page 46) must be set for SCP to work.

The following is the procedure to change the registry key for allowing the use of the “scp channel.”

1. Click the Start button at the bottom left corner of your screen.
2. Click **RUN**

3. Type **REGEDIT**

4. Click **OK**

5. Select Registry Key:

 HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\GeorgiaSoftWorks\GSW_SSHD\Parameters\bAllowServiceSCP

6. Select the menu item **Edit** and then click on **Modify**

7. Enter the new value for the **bAllowServiceSCP** and click **OK**

 The new value will take effect when the GSW SSHD service is restarted.

Allow user to start a remote Shell

Allow/Disallow users use of the ‘shell” channel as defined in the SSH Connection Protocol. This functionality may be accessed using ssh client software.

You can Allow/Disallow this capability by modifying the following registry key.

This configuration is contained in the registry key **bAllowServiceShell**. The key is:

HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\GeorgiaSoftWorks\GSW_SSHD\Parameters\bAllowServiceShell

The default value is 0x01. (Allow remote shell). The value 0x00 disallows the use of a remote shell.

The following is the procedure to change the registry key for allowing the use of a “shell.”

1. Click the **Start** button at the bottom left corner of your screen.

2. Click **RUN**

3. Type **REGEDIT**

4. Click **OK**

5. Select Registry Key:

 HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\GeorgiaSoftWorks\GSW_SSHD\Parameters\bAllowServiceShell

6. Select the menu item **Edit** and then click on **Modify**

7. Enter the new value for the **bAllowServiceShell** and click **OK**

 The new value will take effect when the GSW SSHD service is restarted
Allow user to use SFTP subsystem

Allow/Disallow users use of the SFTP subsystem as defined in the SSH Connection Protocol. This functionality may be accessed using sftp client software.

You can Allow/Disallow this capability by modifying the following registry key.

This configuration is contained in the registry key `bAllowSFTP`. The key is:

```
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Georgia SoftWorks\GSW_SSHD\Parameters\bAllowSFTP
```

The default value is `0x00`. (Disallow use of SFTP subsystem). The value `0x01` allows the use of a sftp subsystem.

The following is the procedure to change the registry key for allowing the use of the sftp subsystem.

1. Click the **Start** button at the bottom left corner of your screen.
2. Click **RUN**
3. Type `REGEDIT` 4. Click **OK**
5. Select Registry Key:
```
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Georgia SoftWorks\GSW_SSHD\Parameters\bAllowSFTP
```
6. Select the menu item **Edit** and then click on **Modify**
7. Enter the new value for the `bAllowSFTP` and click **OK**

The new value will take effect when the GSW SSHD service is restarted
Specify the SFTP and SCP Root Folder

Specify the root folder for SFTP and SCP (page 44). This parameter must point to a valid local folder. For example C:sftproot.

The user’s sftp path is set to this value with the domain name and user name appended.

 Domain: receiving
 User name: bob
 For example C:sftproot\receiving\bob.

 Note: The system administrator must ensure that receiving\bob has access to this folder and its subfolders.

This configuration is contained in the registry key szSFTPRoot. The key is:

 HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Georgia SoftWorks\GSW_SSHD\Parameters\szSFTPRoot

The default value is NOT SET.

The following is the procedure to change the registry key for specifying the SFTP Root Folder.

1. Click the Start button at the bottom left corner of your screen.
2. Click RUN
3. Type REGEDIT
4. Click OK
5. Select Registry Key:
 HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Georgia SoftWorks\GSW_SSHD\Parameters\szSFTPRoot
6. Select the menu item Edit and then click on Modify
7. Enter the new value for the szSFTPRoot and click OK

The new value will take effect when the GSW SSHD service is restarted
Specify UNC path for SFTP and SCP

Specify Universal Naming Convention (UNC) destinations for SFTP and SCP (page 44). UNC paths start with double slashes or backslashes and you can copy files with the security of SSH to network shares.

There are three registry values that must be configured on the GSW SSH Server to use a UNC destination for SFTP or SCP.

- bAllowServiceSCP
- bAllowServiceSFTP
- bRestrictedSFTP
- szSFTPRoot

The registry keys will be set to:

Set bAllowServiceSCP to 1 (Enables SCP operation)
Set bAllowSFTP to 1 (Enables SFTP operation)
Set bRestrictedSFTP to 0 (Disables username and domain restrictions)
Set szSFTPRoot to \ (Sets destination to use a UNC path)

All three of the registry values are located here:

HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Georgia SoftWorks\GSW_SSHD\Parameters

The following procedure is used to change the registry keys for specifying a UNC destination.

1. Click the Start button at the bottom left corner of your screen.
2. Click RUN
3. Type REGEDIT
4. Click OK
5. Select Registry Key:
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Georgia SoftWorks\GSW_SSHD\Parameters\szSFTPRoot

Select the menu item Edit and then click on Modify

Enter \ (just the backslashes) for szSFTPRoot and click OK
6. Select Registry Key:
Select the menu item **Edit** and then click on **Modify**

Enter 0 for the bRestrictedSFTP and click **OK**

7. Select Registry Key:

```
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Georgia SoftWorks\GSW_SSHD\Parameters\bAllowServiceSCP
```

Select the menu item **Edit** and then click on **Modify**

Enter 1 for bAllowServiceSCP and click **OK**

8. Select Registry Key:

```
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Georgia SoftWorks\GSW_SSHD\Parameters\bAllowSFTP
```

Select the menu item **Edit** and then click on **Modify**

Enter 1 for bAllowSFTP and click **OK**

The new values will take effect when the GSW SSHD service is restarted

Network shares should be created for the destinations for sftp/scp.

For example create a share `\backups\USA\Tampa` with the name TAMPA and another share `\backups\USA\Atlanta` with the name Atlanta

Some examples using PuTTYs pscp command the results status.

```
pscp -scp C:\GS_UTS\GS_Auto.txt johnny@jude:192.168.1.56\ATLANTA
GS_Auto.txt | 1 kB | 1.7 kB/s | ETA: 00:00:00 | 100%
```

```
pscp -sftp -v C:\GS_UTS\^*.txt xfer@srv-2016:srv-2016\Tampa
ColorMap.txt |14 kB | 14.3 kB/s | ETA: 00:00:00 | 100%
gsncli.txt | 0 kB | 0.0 kB/s | ETA: 00:00:00 | 100%
gsncli_s.txt | 0 kB | 0.0 kB/s | ETA: 00:00:00 | 100%
gsw_ldef.txt | 0 kB | 0.5 kB/s | ETA: 00:00:00 | 100%
GS_Auto.txt | 1 kB | 1.7 kB/s | ETA: 00:00:00 | 100%
```
Allow user certificate logon

Enable or disable user Digital Certificate Logon

Users are allowed to use Digital Certificates for logon authentication. Some environments may want to restrict this capability and not allow Digital Certificate Logons. This can be controlled by the registry key `bEnableLogonCertificate`. The key is:

```
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\GeorgiaSoftWorks\GSW_SSHD\Parameters\bEnableLogonCertificate
```

The default value is 0x01. (Allow Digital Certificate Logon). The value 0x00 disallows Digital Certificate Logon.

The following is the procedure to change the registry key for enabling or disabling Digital Certificate Logon.

1. Click the **Start** button at the bottom left corner of your screen.
2. Click **RUN**
3. Type `REGEDIT`
4. Click **OK**
5. Select Registry Key:
```
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\GeorgiaSoftWorks\GSW_SSHD\Parameters\bEnableLogonCertificate
```
6. Select the menu item **Edit** and then click on **Modify**
7. Enter the new value for the `bEnableLogonCertificate` and click **OK**

The new value will take effect when the GSW SSHD service is restarted
Allow user public key logon

Enable or disable Public Key Logon

Users are allowed to use public key authentication. Some environments may want to restrict this capability and not allow public key authentication. This can be controlled by the registry key bEnableLogonPublicKey. The key is:

HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Georgia SoftWorks\GSW_SSHD\Parameters\bEnableLogonPublicKey

The default value is 0x01. (Allow public key logon). The value 0x00 disallows public key Logon.

The following is the procedure to change the registry key for enabling or disabling public key Logon.

1. Click the Start button at the bottom left corner of your screen.
2. Click RUN
3. Type REGEDIT
4. Click OK
5. Select Registry Key:
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Georgia SoftWorks\GSW_SSHD\Parameters\bEnableLogonPublicKey
6. Select the menu item Edit and then click on Modify
7. Enter the new value for the bEnableLogonPublicKey and click OK

The new value will take effect when the GSW SSHD service is restarted

Allow User Name/Password logon

Enable or disable user name/password logon

Users are allowed to use user name/password logon authentication. Some environments may want to restrict this capability and not allow user name/password authentication.

This can be controlled by the registry key bEnableLogonPassword. The key is:

HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Georgia SoftWorks\GSW_SSHD\Parameters\bEnableLogonPassword

The default value is 0x01. (Allow user name/password logon). The value 0x00 disallows user name/password logon.
The following is the procedure to change the registry key for enabling or disabling user name/password logon.

1. Click the **Start** button at the bottom left corner of your screen.
2. Click **RUN**
3. Type **REGEDIT**
4. Click **OK**
5. Select Registry Key:

 HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Georgia SoftWorks\GSW_SSHD\Parameters\bEnableLogonPassword

6. Select the menu item **Edit** and then click on **Modify**
7. Enter the new value for the **bEnableLogonPassword** and click **OK**

 The new value will take effect when the GSW SSHD service is restarted

Allow user GSSAPI logon

Enable or disable GSSAPI logon authentication

Users are allowed to use GSSAPI logon authentication. Some environments may want to restrict this capability and not allow GSSAPI authentication.

This can be controlled by the registry key **bEnableLogonGSSAPI**. The key is:

HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Georgia SoftWorks\GSW_SSHD\Parameters\bEnableLogonGSSAPI

The default value is **0x01**. (Allow GSSAPI logon). The value **0x00** disallows GSSAPI logon.

The following is the procedure to change the registry key for enabling or disabling user name/password logon.

1. Click the **Start** button at the bottom left corner of your screen.
2. Click **RUN**
3. Type **REGEDIT**
4. Click **OK**
5. Select Registry Key:

 HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Georgia SoftWorks\GSW_SSHD\Parameters\bEnableLogonGSSAPI
6. Select the menu item Edit and then click on Modify

7. Enter the new value for the bEnableLogonGSSAPI and click OK

The new value will take effect when the GSW SSHD service is restarted

Listen on IPv4 interfaces

Specify the address SSH Shield listens on for IPv4 connections.

This can be controlled by the registry key `szBindIPv4Address`. The key is:

```
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Georgia SoftWorks\GSW_SSHD\Parameters\szBindIPv4Address
```

The default value is the empty string. (Listen on all IPv4 interfaces).

The following is the procedure to change the registry key to specify the address to listen for IPv4 connections.

1. Click the Start button at the bottom left corner of your screen.
2. Click RUN
3. Type REGEDIT
4. Click OK
5. Select Registry Key:

```
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Georgia SoftWorks\GSW_SSHD\Parameters\szBindIPv4Address
```

6. Select the menu item Edit and then click on Modify

7. Enter the new value for the `szBindIPv4Address` and click OK

The new value will take effect when the GSW SSHD service is restarted

Listen on IPv6 interfaces

Specify the address SSH Shield listens on for IPv6 connections.

This can be controlled by the registry key `szBindIPv6Address`. The key is:

```
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Georgia SoftWorks\GSW_SSHD\Parameters\szBindIPv6Address
```
The default value is the empty string. (Listen on all IPv6 interfaces).

The following is the procedure to change the registry key to specify the address to listen for IPv6 connections.

1. Click the **Start** button at the bottom left corner of your screen.
2. Click **RUN**
3. Type **REGEDIT**
4. Click **OK**
5. Select Registry Key:
 `HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Georgia SoftWorks\GSW_SSHD\Parameters\szBindIPv6Address`
6. Select the menu item **Edit** and then click on **Modify**
7. Enter the new value for the `szBindIPv6Address` and click **OK**
 The new value will take effect when the GSW SSHD service is restarted

Allow use of the “Exec” channel

Allow/Disallow users using the “exec” channel as defined in the SSH Connection Protocol. The ‘Exec channel’ allows to use ssh ‘exec’ capable clients in scripts. This functionality may be accessed as shown in this example

```
ssh luke@gsw2003 cmd /c dir
```

You can Allow/Disallow this capability by modifying the following registry key.

This configuration is contained in the registry key **bAllowServiceExecute**. The key is:

```
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Georgia SoftWorks\GSW_SSHD\Parameters\bAllowServiceExecute
```

The default value is **0x0** (Do not allow access to the “exec” channel). The value 1 enables the use of the “exec” channel.

The following is the procedure to change the registry key for allowing the use of the “exec” channel.

1. Click the **Start** button at the bottom left corner of your screen.
2. Click **RUN**
3. Type **REGEDIT**
4. Click OK

5. Select Registry Key:
 \HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Georgia SoftWorks\GSW_SSHD\Parameters\bAllowServiceExecute

6. Select the menu item Edit and then click on Modify

7. Enter the new value for the bAllowServiceExecute and click OK
 The new value will take effect when the GSW SSHD service is restarted

Enable RSA Host Key

Enable or disable the use of the RSA host key for server-client-authentication.

This can be controlled by the registry key `bAllowRSAHostKey`. The key is:

\HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Georgia SoftWorks\GSW_SSHD\Parameters\bAllowRSAHostKey

The default value is the 0x01. (RSA Host Key is enabled to be used for server-to-client authentication). 0x00 will disable its use for server-to-client authentication.

The following is the procedure to change the registry key to enable or disable the use of the RSA Host Key.

1. Click the **Start** button at the bottom left corner of your screen.
2. Click **RUN**
3. Type REGEDIT
4. Click OK
5. Select Registry Key:
 \HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Georgia SoftWorks\GSW_SSHD\Parameters\bAllowRSAHostKey
6. Select the menu item Edit and then click on Modify
7. Enter the new value for the bAllowRSAHostKey and click OK
 The new value will take effect when the GSW SSHD service is restarted
Enable DSA Host Key

Enable or disable the use of the DSA host key for server-client-authentication.

This can be controlled by the registry key `bAllowDSAHostKey`. The key is:

```
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\GeorgiaSoftWorks\GSW_SSHD\Parameters\bAllowDSAHostKey
```

The default value is the `0x01`. (DSA Host Key is enabled to be used for server-to-client authentication). `0x00` will disable its use for server-to-client authentication.

The following is the procedure to change the registry key to enable or disable the use of the DSA Host Key.

1. Click the **Start** button at the bottom left corner of your screen.
2. Click **RUN**
3. Type `REGEDIT`
4. Click **OK**
5. Select Registry Key:

   ```
   HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Georgia SoftWorks\GSW_SSHD\Parameters\bAllowDSAHostKey
   ```
6. Select the menu item **Edit** and then click on **Modify**
7. Enter the new value for the `bAllowDSAHostKey` and click **OK**

 The new value will take effect when the GSW SSHD service is restarted

Enable ECDSA Host Key

Enable or disable the use of the ECDSA host key for server-client-authentication.

This can be controlled by the registry key `bAllowECDSAHostKey`. The key is:

```
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\GeorgiaSoftWorks\GSW_SSHD\Parameters\bAllowECDSAHostKey
```

The default value is the `0x01`. (ECDSA Host Key is enabled to be used for server-to-client authentication). `0x00` will disable its use for server-to-client authentication.

The following is the procedure to change the registry key to enable or disable the use of the ECDSA Host Key.

1. Click the **Start** button at the bottom left corner of your screen.

2. Click **RUN**

3. Type REGEDIT

4. Click **OK**

5. Select Registry Key:

 HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Georgia SoftWorks\GSW_SSHD\Parameters\bAllowECDSAHostKey

6. Select the menu item **Edit** and then click on **Modify**

7. Enter the new value for the **bAllowECDSAHostKey** and click **OK**

The new value will take effect when the GSW SSHD service is restarted
Encryption algorithm categories and lists overview
The main categories of Encryption Algorithms are Host Key Algorithms, Key Exchange Algorithms, Ciphers and MACs. There are also public key and compression algorithms. Each category has a registry key where the value contains the list of algorithms that can be used. In some cases special values enable predefined lists of algorithms.

For each category there may be up to four algorithm lists that are preconfigured and ready to use.

- GSW Default
- FIPS 140-2 Disabled
- FIPS 140-2 Enabled
- All Available Algorithms

You may also create your own custom list of algorithms from the available algorithms. This gives you the flexibility to restrict connections to only certain strength algorithms or to allow only specific legacy algorithms or any combination thereof.

GSW determines the best available algorithms for each category at each release. The list of algorithms setup at installation for each category is called the “GSW Default Algorithms list”. No configuration is required to use the GSW Default Algorithms.

The FIPS 140-2 Enabled list is a list of algorithms that does not include any algorithms that are not supported by FIPS 140-2. When you Enable FIPS 140-2 and restart the SSH service, the FIPS 140-2 Enabled list is activated.

The FIPS 140-2 Disabled is a list of all the algorithms available.

In some cases there is no difference in the algorithms available for FIPS 140-2 Enabled and Disabled. We call this list “All Available Algorithms”. Not surprisingly, it is also used to refer to all the available algorithms.

If the empty string is configured for the value, then you get the complete list of algorithms available based on the FIPS 140-2 setting.
Specify Key Exchange Algorithms

Specify the Key Exchange algorithms available to the server that are offered to the client. The Key Exchange algorithms are offered to the client in the server’s default order unless specified. The default order will vary from release to release to deliver the best blend of security and performance.

Specify the ciphers that the server can offer to the client by modifying the registry key szKexAlgoritms. The key is:

HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Georgia SoftWorks\GSW_SSHD\Parameters\szKexAlgorithms

The following is the default list for Key Exchange Algorithms:

The following is the list and order of all Key Exchange Algorithms available.

The list of Key Exchange Algorithms does not vary based the Enable/Disable value for FIPS 140-2 option.

The following is the procedure to change the registry key to specify the Key Exchange Algorithms available to the client.

1. Click the Start button at the bottom left corner of your screen.
2. Click RUN
3. Type REGEDIT
4. Click OK
5. Select Registry Key:
 HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Georgia SoftWorks\GSW_SSHD\Parameters\szKexAlgorithms
6. Select the menu item Edit and then click on Modify
7. Enter the new value for the szKexAlgorithms and click OK
 The new value will take effect when the GSW SSHD service is restarted
 SPECIFY CIPHERS

Specify the ciphers available to the server that are offered to the client. The ciphers are available to the client in the server’s default order unless specified. The default order will vary from release to release to deliver the best blend of security and performance.

Specify the ciphers that the server can offer to the client by modifying the registry key szCiphers. The key is:

```
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Georgia SoftWorks\GSW_SSHD\Parameters\szCiphers
```

The following is the default list of ciphers:

```
aes256-gcm@openssh.com,chacha20-poly1305@openssl.com,aes256-ctr,aes192-ctr,3des-cbc,aes128-ctr,aes128-gcm@openssl.com,aes256-cbc,rijndael128-cbc,rijndael-cbc@lysator.liu.se,aes192-cbc,rijndael192-cbc,aes128-cbc,rijndael128-cbc,cast128-cbc,blowfish-cbc
```

The following is the list and order of all ciphers available with FIPs 140-2 disabled:

```
aes128-cbc,chacha20-poly1305@openssl.com,aes128-ctr,aes128-gcm@openssl.com,aes256-gcm@openssl.com,3des-cbc,blowfish-cbc,aes128-cbc,aes192-ctr,aes128-gcm@openssl.com,aes256-ctr,3des-cbc,rijndael128-cbc,rijndael192-cbc,rijndael128-cbc,cast128-cbc
```

The following is the list and order of ciphers available with the FIPS 140-2 option enabled.

```
aes128-cbc,aes128-ctr,3des-cbc,aes192-cbc,aes192-ctr,aes256-cbc,aes256-ctr,aes128-gcm@openssl.com,aes256-gcm@openssl.com,rijndael128-cbc,rijndael128-cbc,rijndael192-cbc,rijndael128-cbc,cast128-cbc
```

The registry parameter bDisableFIPS must be set to 1 to use algorithms which are not on the FIPS list. The default value of this parameter is 0.

The following is the procedure to change the registry key to specify the Ciphers available to the client.

1. Click the Start button at the bottom left corner of your screen.
2. Click RUN
3. Type REGEDIT
4. Click OK
5. Select Registry Key:

   ```
   HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Georgia SoftWorks\GSW_SSHD\Parameters\szCiphers
   ```
6. Select the menu item Edit and then click on Modify
7. Enter the new value for the szCiphers and click OK

 The new value will take effect when the GSW SSHD service is restarted
Specify Message Authentication Code Algorithms (MACs)
Specify the Message Authentication Code algorithms available to the server that are offered to the client. The Message Authentication Code algorithms are offered to the client in the server’s default order unless specified. The default order will vary from release to release to deliver the best blend of security and performance.

Specify the Message Authentication Algorithms that the server can offer to the client by modifying the registry key szMACs. The key is:

```
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Georgia SoftWorks\GSW_SSHD\Parameters\szMACs
```

The following is the default value for Message Authentication Code algorithms.

```
hmac-sha2-512-etm@openssh.com,hmac-sha2-256-etm@openssh.com,hmac-sha2-512,hmac-sha2-256,hmac-shal-etm@openssh.com,hmac-shal,hmac-shal-96,hmac-md5,none
```

The following is the list and order of all algorithms available with the FIPS 140-2 option disabled.

```
hmac-sha2-256-etm@openssh.com,hmac-sha2-512-etm@openssh.com,hmac-shal-etm@openssh.com,hmac-sha2-256,hmac-sha2-512,hmac-shal,hmac-shal-96,hmac-md5,none
```

The following is the list and order of algorithms available with the FIPS 140-2 option enabled.

```
hmac-sha2-256-etm@openssh.com,hmac-sha2-512-etm@openssh.com,hmac-shal-etm@openssh.com,hmac-sha2-256,hmac-sha2-512,hmac-shal,hmac-shal-96
```

The registry parameter bDisableFIPS must be set to 1 to use algorithms which are not on the FIPS list. The default value of this parameter is 0.

The following is the procedure to change the registry key to specify the Message Authentication Code algorithms available to the client.

1. Click the Start button at the bottom left corner of your screen.
2. Click RUN
3. Type REGEDIT
4. Click OK
5. Select Registry Key:
```
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Georgia SoftWorks\GSW_SSHD\Parameters\szMACs
```
6. Select the menu item Edit and then click on Modify
7. Enter the new value for the szMACs and click OK

The new value will take effect when the GSW SSHD service is restarted
Algorithm selection for GSW Desktop SSH Client

SSH clients provide a list of Host Key, Key Exchange, Ciphers and MAC algorithms to the SSH Server. The SSH Server goes through each list from the client and for each algorithm chooses the first match from lists that the server supports. If no match is found for any of the algorithms then the connection is refused.

GSW Desktop SSH client provides command line arguments to specify the algorithms and order that are presented to the SSH Server. Customers concerned about achieving high level of security should use the command line arguments to specify safe algorithms as noted in different algorithm tables starting on page 108. It is recommended to only use the safe algorithms, and not offer unsafe algorithms.

If you do not specify command lines arguments for the Desktop client, then defaults are used and noted in each section. The defaults are the strongest possible algorithms regardless of FIPs setting.

For more detail on Command Line Options for the SSH Clients please see the section Georgia SoftWorks Desktop Client Command line options – Description in the GSW UTS Manual.

<table>
<thead>
<tr>
<th>GSW Desktop SSH Host Key Algorithms (same list with FIPS 140-2 Disabled or Enabled)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• rsa-sha2-512</td>
</tr>
<tr>
<td>• rsa-sha2-256</td>
</tr>
<tr>
<td>• ssh-rsa</td>
</tr>
<tr>
<td>• ssh-dss</td>
</tr>
<tr>
<td>• ecdsa-sha2-nistp521</td>
</tr>
<tr>
<td>• ecdsa-sha2-nistp384</td>
</tr>
<tr>
<td>• ecdsa-sha2-nistp256</td>
</tr>
</tbody>
</table>

If you do not specify the Host Key Algorithms then the default is:

Default Host Key Algorithms

• rsa-sha2-512

See the master Host Key Algorithm list for all GSW SSH products on page 108. Safe algorithms are in green and unSafe are in red.
Key Exchange Algorithm List

<table>
<thead>
<tr>
<th>GSW Desktop SSH Key Exchange Algorithms (same list with FIPS 140-2 Disabled or Enabled)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• ecdh-sha2-nistp256</td>
</tr>
<tr>
<td>• ecdh-sha2-nistp384</td>
</tr>
<tr>
<td>• ecdh-sha2-nistp521</td>
</tr>
<tr>
<td>• curve25519-sha256</td>
</tr>
<tr>
<td>• curve25519-sha256@libssh.org</td>
</tr>
<tr>
<td>• diffie-hellman-group-exchange-sha256</td>
</tr>
<tr>
<td>• diffie-hellman-group16-sha512</td>
</tr>
<tr>
<td>• diffie-hellman-group14-sha256</td>
</tr>
<tr>
<td>• diffie-hellman-group18-sha512</td>
</tr>
<tr>
<td>• diffie-hellman-group-exchange-shal</td>
</tr>
<tr>
<td>• diffie-hellman-group1-shal</td>
</tr>
<tr>
<td>• diffie-hellman-group14-shal</td>
</tr>
</tbody>
</table>

Table 4: GSW Desktop Key Exchange Algorithms

If you do not specify the Key Exchange Algorithms then the defaults are listed below:

Default Key Exchange Algorithms (in order):

• diffie-hellman-group18-sha512
• curve25519-sha256

See the Master Key Exchange algorithm list for all GSW SSH products on page 108. Safe algorithms are in green and unsafe are in red.
Ciphers List

Note: There are different lists for Ciphers depending if you have FIPs 140-2 enabled.

<table>
<thead>
<tr>
<th>GSW Desktop SSH Client Ciphers</th>
<th>SSH with FIPS 140-2 Disabled</th>
<th>with FIPS 140-2 Enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>• aes128-ctr(^5)</td>
<td></td>
<td>• aes128-ctr(^5)</td>
</tr>
<tr>
<td>• aes128-gcm@openssl.com</td>
<td></td>
<td>• aes128-gcm@openssl.com</td>
</tr>
<tr>
<td>• aes128-cbc</td>
<td></td>
<td>• aes128-cbc</td>
</tr>
<tr>
<td>• chacha20-poly1305@openssl.com</td>
<td></td>
<td>• 3des-cbc</td>
</tr>
<tr>
<td>• 3des-cbc</td>
<td></td>
<td>• aes192-ctr(^6)</td>
</tr>
<tr>
<td>• blowfish-cbc</td>
<td></td>
<td>• aes192-cbc</td>
</tr>
<tr>
<td>• aes192-ctr(^6)</td>
<td></td>
<td>• aes256-ctr(^7)</td>
</tr>
<tr>
<td>• aes192-cbc</td>
<td></td>
<td>• aes256-gcm@openssl.com</td>
</tr>
<tr>
<td>• aes256-gcm@openssl.com</td>
<td></td>
<td>• aes256-cbc</td>
</tr>
<tr>
<td>• aes256-ctr(^7)</td>
<td></td>
<td>• rijndael128-cbc</td>
</tr>
<tr>
<td>• aes256-cbc</td>
<td></td>
<td>• rijndael192-cbc</td>
</tr>
<tr>
<td>• rijndael128-cbc</td>
<td></td>
<td>• rijndael256-cbc</td>
</tr>
<tr>
<td>• rijndael192-cbc</td>
<td></td>
<td>• rijndael-cbc@lysator.liu.se</td>
</tr>
<tr>
<td>• rijndael256-cbc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• rijndael-cbc@lysator.liu.se</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• cast128-cbc</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5: GSW Desktop Ciphers - SSH and with FIPS 140-2

If you do not specify the Ciphers then the defaults are:

Default Ciphers (in order):

- aes256-gcm@openssl.com
- chacha20-poly1305@openssl.com
- aes256-ctr

See the master Cipher list for all GSW SSH products on page 109. Safe algorithms are in green and unSafe are in red.

\(^5\) aes128-ctr is safe when used with hmac-sha2-256-etm@openssh.com or hmac-sha2-512-etm@openssh.com

\(^6\) aes192-ctr is safe when used with hmac-sha2-256-etm@openssh.com or hmac-sha2-512-etm@openssh.com

\(^7\) aes256-ctr is safe when used with hmac-sha2-256-etm@openssh.com or hmac-sha2-512-etm@openssh.com
Message Authentication Code (MACs) list
Note: There are different lists for Message Authentication Code algorithms depending if you have FIPs 140-2 enabled.

<table>
<thead>
<tr>
<th>GSW Desktop SSH MACs</th>
<th>with FIPS 140-2 Enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSH with FIPS 140-2 Disabled</td>
<td>with FIPS 140-2 Enabled</td>
</tr>
<tr>
<td>• hmac-sha2-256-etm@openssh.com</td>
<td>• hmac-sha2-256-etm@openssh.com</td>
</tr>
<tr>
<td>• hmac-sha2-512-etm@openssh.com</td>
<td>• hmac-sha2-512-etm@openssh.com</td>
</tr>
<tr>
<td>• hmac-sha1-etm@openssh.com</td>
<td>• hmac-sha1-etm@openssh.com</td>
</tr>
<tr>
<td>• hmac-sha2-256</td>
<td>• hmac-sha2-256</td>
</tr>
<tr>
<td>• hmac-sha2-512</td>
<td>• hmac-sha2-512</td>
</tr>
<tr>
<td>• hmac-shal</td>
<td>• hmac-shal</td>
</tr>
<tr>
<td>• hmac-sha1-96</td>
<td>• hmac-sha1-96</td>
</tr>
<tr>
<td>• hmac-md5</td>
<td>• hmac-md5</td>
</tr>
<tr>
<td>• none</td>
<td>• none</td>
</tr>
</tbody>
</table>

Table 6: GSW Desktop MACs both SSH and FIPS 140-2

If you do not specify the MACs then the default is:

Default MACs:

• hmac-sha2-512-etm@openssh.com

See the master Message Authentication Code (MACs) list for all GSW SSH products on page 110. Safe algorithms are in green and unSafe are in red.
SSH Desktop Client Command line Syntax

To manually specify the SSH encryption parameters for the GSW SSH Desktop Client, use the long style arguments on the SSH command line.

Note: Long style arguments have the syntax using the plus “+” sign followed by the argument name, then an equals sign “=” and then the list of algorithms comma separated. These are the algorithms that can be configured on the SSH command line.

```
+HostKeyAlgorithms=<list_of_host_key_algorithms>
+KexAlgorithms=<list_of_kex_algorithms>
+Ciphers=<list_of_ciphers>
+Macs=<list_of_macs>
```

EXAMPLE: SSH DESKTOP CLIENT COMMAND LINE ARGUMENTS FOR ALGORITHMS

When I connect to the SSH Server I want the high security and want to use the following algorithms.

- **Host Key Algorithm:** rsa-sha2-512
- **Key Exchange Algorithms:** curve25519-sha256@libssh.org
- **Ciphers:** aes256-ctr
- **MACs:** hmac-sha2-512-etm@openssh.com, hmac-sha2-256-etm@openssh.com

A typical command line would look as follows.

```
c:\gs_uts\gs_ssh –ujohndoe –d. –pmostsecure -hsoloman +Ciphers=aes256-ctr
+KexAlgorithms=curve25519-sha256@libssh.org +HostKeyAlgorithms=rsa-sha2-512
+Macs=hmac-sha2-512-etm@openssh.com,hmac-sha2-256-etm@openssh.com
```

Please note the above command is one a single line, so don’t be confused by the line wraps.

Please note that the other command line parameters in this example, –ujohndoe –d. –pmostsecure and -hsoloman are just examples for a particular system. The emphasis of this example is to show the algorithms selected.
Change the SSH Port Number

The default port number is port 22. You can change the port number to the port of your choice. **Important:** Be sure that you also change the port number on the SSH clients to the same port number configured on the SSH Server.

In the event you want to change the SSH port on the server you can do so by changing the following registry key.

This configuration is contained in the registry key *usGSWSSHDPort* which is a number. The key is:

For 64-bit

HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\GeorgiaSoftWorks\GSW_SSHD\Parameters\usGSWSSHDPort

For 32-bit

HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Georgia SoftWorks\GSW_SSHD\Parameters \usGSWSSHDPort

The default value is 22.

This following is a procedure to change the registry key for the SSH port number.

1. Click the Start button at the bottom left corner of your screen.
2. Click RUN
3. Type REGEDIT
4. Click OK
5. Select Registry Key:

 For 64-bit HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Georgia SoftWorks\GSW_SSHD\Parameters \usGSWSSHDPort
 For 32-bit HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Georgia SoftWorks\GSW_SSHD\Parameters \usGSWSSHDPort

6. Select the menu item **Edit** and then click on **Modify**
7. Enter the new value for the *usGSWSSHDPort* and click **OK**
8. *The new value will take effect when the GSW SSHD service is restarted.*
Location of SSH Server RSA Private Key

The SSH Server RSA Private Key is in an encrypted file and is in the PEM format.

This configuration is contained in the registry key `szServerRSAKeyFile` which is a text string. You can change the location by modifying the registry key.

The key is:

```
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Georgia
SoftWorks\GSW_SSHD\Parameters\szServerRSAKeyFile
```

The default value is the installation folder for the GSW SSH Shield.

```
C:\Program Files\Georgia SoftWorks\Georgia SoftWorks SSH Shield\sshd_rsa.key
```

The following is a procedure to change the Location of SSH Server RSA Private Key.

1. Click the **Start** button at the bottom left corner of your screen.
2. Click **RUN**
3. Type **REGEDIT**
4. Click **OK**
5. Select Registry Key

```
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Georgia
SoftWorks\GSW_SSHD\Parameters\szServerRSAKeyFile
```

6. Select the menu item **Edit** and then click on **Modify**
7. Enter the new value for the `szServerRSAKeyFile` and click **OK**

The new value will take effect when the GSW SSHD service is restarted.
Location of SSH Server DSA Private Key

The SSH Server DSA Private Key is in an encrypted file and is in the PEM format.

This configuration is contained in the registry key szServerDSAKeyFile which is a text string. You can change the location by modifying the registry key.

The key is:

```
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\GeorgiaSoftWorks\GSW_SSHD\Parameters\szServerDSAKeyFile
```

The default value is the installation folder for the GSW SSH Shield.

```
C:\Program Files\Georgia SoftWorks\Georgia SoftWorks SSH Shield\sshd_dsa.key
```

1. Click the Start button at the bottom left corner of your screen.
2. Click RUN
3. Type REGEDIT
4. Click OK
5. Select Registry Key

```
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\GeorgiaSoftWorks\GSW_SSHD\Parameters\szServerDSAKeyFile
```

6. Select the menu item Edit and then click on Modify
7. Enter the new value for the Server DSA Key Location and click OK

The new value will take effect when the GSW SSHD service is restarted.
Location of SSH Server ECDSA Private Key

The SSH Server Elliptic Curve Cryptography DSA Private Key is in an encrypted file and is in the PEM format.

This configuration is contained in the registry key `szServerECDSAKeyFile` which is a text string. You can change the location by modifying the registry key.

The key is:

```
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\GeorgiaSoftWorks\GSW_SSHD\Parameters\szServerECDSAKeyFile
```

The default value is the installation folder for the GSW SSH Shield.

`C:\Program Files\Georgia SoftWorks\Georgia SoftWorks SSH Shield\sshd_ecdsa.key`

1. Click the **Start** button at the bottom left corner of your screen.
2. Click **RUN**
3. Type **REGEDIT**
4. Click **OK**
5. Select Registry Key

```
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\GeorgiaSoftWorks\GSW_SSHD\Parameters\szServerECDSAKeyFile
```

6. Select the menu item **Edit** and then click on **Modify**
7. Enter the new value for the Server DSA Key Location and click **OK**

The new value will take effect when the GSW SSHD service is restarted.
Location of Fingerprints for all Host Keys

The file HostFingerPrints.txt in the Georgia SoftWorks SSH Shield installation folder contains key fingerprints for all host keys offered for server-to-client authentication. These key fingerprints may be entered for host fingerprint configuration of the Georgia SoftWorks Business Tunnel.

The file is formatted as shown below:

RSA key SHA1 fingerprint
RSA key SHA-256 fingerprint
b:81:5c:d1:2c
DSA key SHA1 fingerprint
DSA key SHA-256 fingerprint
b:19:12:bb:ec
ECDSA key SHA-256 fingerprint ..
8:36:8c:5c:b9

Internal SSH Activity Logging FLAG for Debugging

In the event that GSW Technical Support requires additional information, you may need to turn on SSH internal activity logging.

You can activate the internal SSH activity logging by modifying the following registry key.

This configuration is contained in the registry key bEnableWODLog which is a flag. The key is:

HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Georgia SoftWorks\GSW_SSHD\Parameters\bEnableWODLog

The default value is 0.

8 Usually ‘C:\Program Files\Georgia SoftWorks\Georgia SoftWorks SSH Shield’
1. Click the Start button at the bottom left corner of your screen.

2. Click RUN

3. Type REGEDIT

4. Click OK

5. Select Registry Key

 HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Georgia SoftWorks\GSW_SSHD\Parameters\bEnableWODLog

6. Select the menu item Edit and then click on Modify

7. Enter the new value for the Enable Activity Logging and click OK

 The new value will take effect when the GSW SSHD service is restarted.
Internal SSH Activity Log file location for Debugging

In the event that GSW Technical Support requires additional information, you may need change the SSH internal activity log file location.

You can modify the internal SSH activity log file name and location by modifying the following registry key.

This configuration is contained in the registry key `szWODLogFile` which is a text string. The key is:

```
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Georgia SoftWorks\GSW_SSHD\Parameters\szWODLogFile
```

The default value is the log folder in the GSW UTS Installation directory. Usually this is:

```
C:\GS_UTS\log
```

NOTE: `bEnableWODLog` must be set to 1 for the log file to operate.

Note: (you must be on the Windows NT/XP/VISTA/2000+ system that the Georgia SoftWorks SSH Server is installed. However, you may connect to the SSH Registry from a remote location).

1. Click the **Start** button at the bottom left corner of your screen.
2. Click **RUN**
3. Type **REGEDIT**
4. Click **OK**
5. Select Registry Key

```
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Georgia SoftWorks\GSW_SSHD\Parameters\szWODLogFile
```
6. Select the menu item **Edit** and then click on **Modify**
7. Enter the new value for the Enable Log File Name and Location and click **OK**

The new value will take effect when the GSW SSHD service is restarted.
SSH Server Mapping Tool for Certificates and Public Keys

Georgia SoftWorks researched and developed an innovative, easy to use, and secure implementation of Digital Certificates. The result of this effort is the GSW SSH SHIELD Certificate Mapping Tool.

The entire configuration is done through a GUI with wizard style dialogs reminiscent of IIS certificate-to-user account mapping. The solution preserves all of the cryptographic strength of the public key solution, adds convenient, well scaling, certificate-to-user account mapping options.

![Figure 34 - SSH Certificate Mapping Tool](image)

The overall solution allows authenticating SSH users who log on with a client certificate by mapping the certificates to Windows user accounts. The client certificates are analyzed and used to either deny or grant host access to a connecting session.

There are two methods in which one can map certificates.

9 A Digital Certificate binds a name (or identity) to a public key value and is used in verifying the identity of the certificates owner.
Certificate One-to-one mapping

'One-to-one' mapping maps a individual client certificate to a individual Windows user account. The SSH-2 server compares certificates from a pre-configured list with the client certificate that is sent by the SSH-2 client. An identical match must occur for the mapping to proceed.

![One-to-one certificate mapping](image)

Figure 35 - One-to-one certificate mapping

Certificate Many-to-one mapping

'Many-to-one' mapping maps multiple certificates to an individual Windows user account. It uses wildcard matching rules to define the certificate criteria for mapping. This type of mapping does not compare the actual client certificate. Instead, it accepts all client certificates that meet specific criteria. If a certificate matches the rules, it is mapped to the indicated user account. Typically one would also select a Certificate Trust List (CTL) to assure the client certificates are truly trustworthy. CTLs make it possible to limit the number of acceptable root CAs which are able to issue certificates to users.
Public Key 1-to-1 mapping

Public Key '1-to-1' mapping provides a very nice method to allow public key to user account mapping.
Certification Validation – Certificate Trust List

You can also configure Certificate Trust List (CTL) with the GSW Mapping Tool.

Figure 38 - Certificate Validation Certificate Trust List
Public/Private Key Creation and Use

Public / Private Key Introduction

Public key authentication is far more secure than passwords and provides exceptional usability benefits. The cryptographic strength of the recommended and trustworthy algorithms are superior to even the longest passwords. The user does not have to remember a password and Public Key Authentication provides automatic logon capabilities. The benefits are substantial.

When using this type of authentication, the entity (SSH client software) being authenticated has a public key and a private key. The private key is kept on the client, while the public key is stored on the server.

In this example we will generate a Public/Private key pair, install the private key on the client and the public key on the server. We also map the public key to a Windows user account, which provides automatic logon on.
Creating a Public / Private Key

There are a multitude of tools available to generate a Public/Private key pair, many at no cost. In this example we will use PuTTYgen to create a public and private key.

1. Download PuTTYgen. Click on the PuTTYgen executable.
2. Select the SSH-2 RSA radio button, near the bottom of the window.
3. Create a key set by clicking on the “Generate” button.

4. Randomly move the mouse pointer in the open area under the progress bar, until the progress bar completes.
Figure 40: Puttygen Tool Uses Mouse-Movement to Create Randomness for Key Creation
5. Once the progress bar completes, create an optional key Passphrase\(^\text{10}\).

![PuTTY Key Generator Image]

6. Click Save public key and give it a descriptive file name and location to be stored.

7. Click Save private key and give it a descriptive file name and location to be stored. You may now close the PuTTYgen tool.

You have now create the public/private key pair. The next step is to install the public key on the server and the private key on the client.

\(^{10}\) The optional Passphrase is used when the key is installed on the client (see page 76)
Install Public Key on the Server and Map to Windows User Account

1. Open the Public key you created with notepad or a simple text editor.
2. Copy the highlighted area as shown below to your clip board. Do not include the leading and trailing description tags.

```
---- BEGIN SSH2 PUBLIC KEY ----
AAAAB3NzaC1yc2EAAAABJQAAAQEAqqX23vaw7uf5RG2C2RocBfhecnnpjCLlssgnzIZMeEa0iIcaNZxwvm1wHokVzY94kvGkMphTqUUVAlxifEvgVDrthvrHJWiUzN+7
Uzh60XI4g1N+rGag/L/KMG2ZydQ+cl7iBLq+Fia45k+/fcGZZmDRjHf+rpROpS72i5ic2ayIC4bgSEEvzO6dGLTldjzDQO1JiH15REyia3NmfiSdRaAMHLemutYykpVtXctAWx+aSZo5vJj+k/ByFpzQjwpSiLuXEcn+eidDI7ocw2Ely10qbVjNcqePooVuq525YEslkR6XPvoRxjAhzWRQH0911VhJBRZ5Els+DzmgHcQ==

---- END SSH2 PUBLIC KEY ----
```

3. On the Georgia SoftWorks UTS server, go to Start > All Programs > Georgia SoftWorks UTS > Certificate Mapping Tool for GSW SSH Shield

4. Expand Public Key Mapping, and select 1-to-1. Next click Add.
5. Click Enable this mapping and paste the clip board data into the Public key area. Fill out the rest of the fields below.

![Figure 43: Mapping an Account to a Public Key](image)

6. Click OK, and click Apply. You should now see the mapping you created.

![Figure 44: Certificate Mapping Tool – Public Key Mappings](image)
7. The changes will not take effect until the Georgia SoftWorks SSH Shield service is restarted. Click yes to restart SSH or No if you intend to restart later.

Figure 45: Certificate Mapping Tool Dialogue Box
Install and Configure Private Key on the Client

Now we will install and configure the Private Key on the GSW client. This will allow the device to connect securely using an SSH encrypted session.

1. Copy the private key generated previously onto the mobile device using Mobile Device Center. You can download it here.
2. Open the GSW client on the device you wish to connect to the GSW server.
3. Select the Session Configuration File you wish to modify. In this case we are selecting `default.gswtc`.

Figure 47: Selecting a Connection profile
4. Enter the host information and port, 22 is the default. Select “Options…”
5. In the “Encryption” drop down, select SSH2.
6. Place a checkmark in the “Public key logon” box.
7. This will enable the “Configure” button. Click the “Configure” button.

Figure 50: Configuring Public Key Log-on
8. Click the “Browse” button.

Figure 51: Configuring the Client by Providing a Private Key
9. Navigate to the location where you saved the Private Key (*.ppk) on the device, and select.

Figure 52: Browsing to Find Private Key
10. Enter the passphrase (if created, see page 81), and press the “OK” button at the bottom of the screen. You should see a confirmation that the key was imported successfully. Click “OK” to close the dialog box.

Figure 53: Private Key Imported into Client
11. Launch the GSW client.

![Testing connectivity to host](image)

Figure 54: Client Launch Using Public/Private Key Authentication
12. You should see the GSW client connect and begin a session.

![Figure 55: Session Connected via Public / Private Key Authentication](image-url)
SSH Clients

In addition to the GSW SSH clients, the Georgia SoftWorks SSH Server is compatible with all SSH compliant third party clients.

GSW ANDROID SSH CLIENTS

GSW offers GSW ConnectBot, an SSH client for Android. It provides a comprehensive set of features, and offers the strongest encryption available on the commercial market. If you use Android devices and security is a priority, then the GSW ConnectBot is the SSH client you need. It also comes with a license, settings and update server to make administration almost effortless.

Please visit the GSW ConnectBot web page.

GSW WINDOWS SSH CLIENTS

All the powerful and popular GSW Client options and features described in the GSW UTS are available for the GSW SSH server except where specifically noted. Georgia SoftWorks offers SSH Clients for the following Windows platforms:

<table>
<thead>
<tr>
<th>Operating System</th>
<th>GSW Widows SSH Client</th>
<th>Method to Launch Client</th>
</tr>
</thead>
<tbody>
<tr>
<td>Window 98/ME</td>
<td>Yes</td>
<td>Program Group Shortcut</td>
</tr>
<tr>
<td>Windows NT 4.0</td>
<td>Yes</td>
<td>Program Group Shortcut</td>
</tr>
<tr>
<td>Windows 2000</td>
<td>Yes</td>
<td>Program Group Shortcut</td>
</tr>
<tr>
<td>Windows XP</td>
<td>Yes</td>
<td>Program Group Shortcut</td>
</tr>
<tr>
<td>Windows VISTA</td>
<td>Yes</td>
<td>Program Group Shortcut</td>
</tr>
<tr>
<td>Windows 2003</td>
<td>Yes</td>
<td>Program Group Shortcut</td>
</tr>
<tr>
<td>Windows 7</td>
<td>Yes</td>
<td>Program Group Shortcut</td>
</tr>
<tr>
<td>Windows 8</td>
<td>Yes</td>
<td>Program Group Shortcut</td>
</tr>
<tr>
<td>Windows 10</td>
<td>Yes</td>
<td>Program Group Shortcut</td>
</tr>
<tr>
<td>Windows 2008/R2</td>
<td>Yes</td>
<td>Program Group Shortcut</td>
</tr>
<tr>
<td>Windows 2012/R2</td>
<td>Yes</td>
<td>Program Group Shortcut</td>
</tr>
<tr>
<td>Windows 2016</td>
<td>Yes</td>
<td>Program Group Shortcut</td>
</tr>
<tr>
<td>Windows CE .NET 4.2+</td>
<td>Yes</td>
<td>Device Desktop Shortcut</td>
</tr>
<tr>
<td>Windows Mobile</td>
<td>Yes</td>
<td>Device: Start</td>
</tr>
<tr>
<td>Pocket PC 2002</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Pocket PC 2003</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Java Client</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Java Applet</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

Table 7: GSW SSH Client Platforms

Please see the Georgia SoftWorks UTS User Guide for detailed description of client features and options.
In general, the GSW client installation procedures and features described in the GSW UTS User Manual are applicable to the GSW SSH Clients.

To invoke the GSW SSH Client, use the GS SSH Client shortcut in the GSW UTS program group. When connecting with the GSW SSH desktop client, you will get a logon banner similar to the one displayed below. The Host, Username, Password, and domain prompts are presented.

Figure 56: GSW SSH Desktop Client
Windows Mobile Clients

GSW provides SSH clients for Pocket PC/Windows Mobile class devices. Installation is as described in the GSW UTS User Manual. Items specific to the GSW SSH Pocket PC clients are noted below.

Windows Mobile

Upon installation of the GSW Windows Mobile client, you have the connection configuration similar as pictured below. The main item of interest is the Port selected to use for the SSH connection. The normal port used for SSH connections is port 22. Please configure as identified.

![Figure 57: GSW PPC 2003 Client](image)

To enable SSH encryption click on the Options button.
After clicking on the Options Button the following screen is displayed. The encryption combo box allows the options No encryption, 40-bit, 128-bit, SSH and FIPS SSH. Options selected that do not fit into the context of the GSW Server will result in a failed connection. For example, selecting FIPS SSH encryption when the GSW SSH server does not have FIPS enabled.

Figure 58: GSW PPC 2003 Client – Options

This is a screen shot of a PPC2003 connection to SAP via SAPConsole.

Note: The Yellow SSH symbol confirms that the SSH protocol is in use.

Figure 59: GSW PPC 2003 Client - SAPConsole - SSH
Windows CE 4.2+ Devices

Georgia SoftWorks provides a Windows CE .NET 4.2+ SSH client. Below are some screen images of the GSW SSH Client in action on a Psion-Teklogix device.

Upon launching from the shortcut on the device desktop the initial screen (Figure 60) is displayed. From the Initial Screen you have the menu options File, View, Session and Help.

The Session menu (Figure 61) item provides the mechanism to Connect, Disconnect and to configure your session configuration settings.
By selecting the Session -> Settings the screen below (Figure 62) is presented allowing configuration of the Host, Port, User, Password and Domain. Selecting the Options button provides similar options as presented in the GSW Windows Mobile client (Figure 58).

![Figure 62: Psion-Teklogix Connection Settings](image1)

When the configuration is complete you can save the session configuration information by using the File menu item (Figure 63). You may recall the configuration and minimize the amount of data typed to connect. It also provides the flexibility to save several profiles if needed.
Using the Menu item Session->Connect, the connection is established and Figure 64 is an example of a connection to SAP via SAPConsole.

After the work is complete the session is disconnected by using the Menu item Session->Disconnect.
Third Party SSH Clients

The GSW SSH Server allows connections from 3rd Party SSH Clients.

Please see the User’s Manual of the 3rd party SSH client of interest for operations of that client. We have included screen shots from three popular SSH clients operating with the GSW SSH Server.

Below is a screen shot of the SecureCRT SSH Client connected to the GSW SSH Server and running SAP via SAPConsole.

![Figure 66: 3rd Party Client – SecureCRT – SAPConsole](image)

Figure 66: 3rd Party Client – SecureCRT – SAPConsole
Below is a screen shot of the PuTTY SSH Client displaying some of the GSW International character support.

Figure 67: 3rd Party Client - PuTTY - Unicode
Below is a screen shot of the F-Secure SSH Client connected to the GSW SSH Server and running SAP via SAPConsole.

Figure 68: 3rd Party Client - F-Secure SSH Client
Specify Domain with a 3rd Party Client

A user account’s domain can be specified in the SSH client’s user name field. If a domain is not specified then the GSW UTS will use the default domain configured in the UTS registry. If a UTS default domain is not configured and a domain is not specified in the SSH client’s user name field then the system will attempt to validate the user account logon using the local account database.

Use the following syntax to specify the domain in the SSH client’s user name field:

```
username@domainname
```

Where *username* is the name of the user and *domainname* is the name of the domain.

If a default domain is specified in the UTS registry then the domain entered above will take precedence. Please see the GSW UTS User Manual for more information.
Registry Variables

Many registry variables exist for provisioning the system. Registry variables are an excellent method to configure software while utilizing skills already learned by the system administrator. There is no need to learn yet another interface to provision the software. Here is a list of the registry variables and a brief description of their use. Please see the appropriate section in this User Manual for complete descriptions.

All Registry values used by the Georgia SoftWorks SSH Server are stored in the following Registry path.

HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Georgia SoftWorks\GSW_SSHD\Parameters

- **bAllowServiceSCP** - Allow/Disallow user’s use of the “SCP” channel. Default=0. (Page 44)
- **bAllowServiceShell** - Controls use of the “Shell” channel as defined. Default=1. (Page 45)
- **bAllowSFTP** - Control use of the SFTP subsystem. Default=0. (Page 46)
- **bRestrictedSFTP** - Disables username and domain restrictions. Default=1 (Page 48)
- **bDisableFIPS** - This parameter must be set to 1 to use algorithms which are not on the FIPS list. The default value of this parameter is 0.
- **szSFTPRoot** - Specifies the local folder path to use with SFTP. Default=empty string. (Page 47)
- **bEnableLogonCertificate** - Enables/Disables use of Logon Certificates. Default=1. (Page 50)
- **bEnableLogonPublicKey** - Enables/Disables use of Public Key authentication. Default=1. (Page 51)
- **bEnableLogonPassword** - Enables/Disables use of User Name/Password authentication. Default=1. (Page 51)
- **bEnableLogonGSSAPI** - Enables/Disables use of GSSAPI for logon. Default=1. (Page 52)
- **szBindIPv4** - Specifies address to listen on for IPv4 connections. Default=empty string (Page 53)
- **szBindIPv6** - Specifies address to listen on for IPv6 connections. Default=empty string (Page 53)
- **bAllowServiceExecute** - Allows/Disallows user’s use of the “exec” channel. Default=0 (Page 54)
- **bAllowRSAHostKey** - Enables/Disables use of RSA Host Key. Default=1 (Page 55)
• bAllowDSSAHostKey - Enables/Disables use of DSA Host Key Default=1 (Page 56)

• bAllowECDSAHostKey - Enables/Disables use of ECDSA Host Keys Default=1 (Page 56)

• szCiphers- Specify the list of Ciphers the server can offer the client.

 Default= "aes256-gcm@openssh.com,chacha20-poly1305@openssh.com,aes256-ct
r,aes192-ctr,3des-cbc,aes128-ctr,aes128-gcm@openssh.com,aes256-c
bc,rijndael256-cbc,rijndael-cbc@lysator.liu.se,aes192-cbc,rijndae
112-cbc,aes128-cbc,rijndael128-cbc,cast128-cbc,blowfish-cbc " (Page 58)

• szKexAlgorithms - Specify the list of Key Exchange Algorithms the server can offer the client.

 Default= "curve25519-sha256,curve25519-sha256@libssh.org,diffie-hellman-
group18-sha512,diffie-hellman-group16-sha512,diffie-hellman-group-exchange-
sha256,diffie-hellman-group14-sha256,ecdh-sha2-nistp521,ecdh-sha2-
nistp384,ecdh-sha2-nistp256,diffie-hellman-group-exchange-shal,diffie-
hellman-group14-shal,diffie-hellman-group1-shal" (Page 59)

• szMacs - Specify the list of Message Authentication Code algorithms the server can offer to the client.

 Default= "hmac-sha2-512-etm@openssh.com,hmac-sha2-256-etm@openssh.com,hmac-
sha2-512,hmac-sha2-256,hmac-shal-etm@openssh.com,hmac-shal,hmac-shal-
96,hmac-md5,none" (Page 60)

• bEnableWODLog - Turn Logging ON for SSH internals activity. Default = 0 (Page 70)

• dwInactivityTimeout - Reserved, do not change

• szServerAddress - Reserved, do not change

• szServerDSAKeyFile - Location of SSH Servers DSA private key file in PEM format. The file is encrypted. (Page 69)

• szServerECDSAKeyFile - Location of SSH Servers ECDSA private key file in PEM format. The file is encrypted. (Page 70)

• szServerRSAKeyFile - Location of SSH Servers RSA private key file in PEM format. The file is encrypted. (Page 68)

• szWODLogFile - Path and File Name of the SSH internal activity log file. To enable the log bEnableWODLog must be set to 1. (Page 73)

• usGSWSSHDPort - The port number clients will be connecting to. Default = 22(decimal) is the standard port assigned to SSH. (Page 44)
SSH Algorithms Support

Key Exchange Algorithms

Key exchange algorithms are used to exchange cryptographic keys between the SSH Server and the SSH client.

<table>
<thead>
<tr>
<th>GREEN – Strong Enough to be considered SAFE</th>
<th>GSW SSH Server</th>
<th>GSW Clients V8.09.0001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purple – Questioned by 3rd parties</td>
<td>8.09.0001</td>
<td>Desktop</td>
</tr>
<tr>
<td>Black – not researched yet.</td>
<td>FIPS</td>
<td>CE 4.2</td>
</tr>
<tr>
<td>RED – Should not be used</td>
<td></td>
<td>CE 5.0+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Host Key Algorithms</th>
<th>FIPS</th>
<th>FIPS</th>
<th>FIPS</th>
<th>FIPS</th>
<th>V1.9.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>ssh-ed25519</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>rsa-sha2-512</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>rsa-sha2-256</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ecdsa-sha2-nistp521</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ecdsa-sha2-nistp384</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ecdsa-sha2-nistp256</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ssh-rsa</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ssh-dss</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Key exchange algorithms</th>
<th>FIPS</th>
<th>FIPS</th>
<th>FIPS</th>
<th>FIPS</th>
<th>V1.9.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>curve25519-sha256@libssh.org</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>curve25519-sha256</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>diffie-hellman-group-exchange-sha256</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>diffie-hellman-group14-sha256</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>diffie-hellman-group16-sha512</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>diffie-hellman-group18-sha512</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ecdh-sha2-nistp521</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ecdh-sha2-nistp384</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ecdh-sha2-nistp256</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ext-info-c</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>diffie-hellman-group-exchange-sha1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>diffie-hellman-group14-sha1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>diffie-hellman-group1-sha1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Table 8: SSH Host Key and Key Exchange Algorithms
Ciphers

Ciphers are algorithms used for performing encryption or decryption.

<table>
<thead>
<tr>
<th>Ciphers</th>
<th>GSW SSH Sever</th>
<th>GSW Clients</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8.09.0001</td>
<td>Desktop</td>
<td>CE 4.2</td>
<td>CE 5.0+</td>
<td>GSW ConnectBot</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FIPS</td>
<td>FIPS</td>
<td>FIPS</td>
<td>FIPS</td>
<td>V1.9.9</td>
<td></td>
</tr>
<tr>
<td>chacha20-poly1305@openssh.com</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>aes256-gcm@openssh.com</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aes128-gcm@openssh.com</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aes256-ctr<sup>11</sup></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>aes128-ctr<sup>12</sup></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aes192-ctr<sup>13</sup></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aes256-cbc</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aes192-cbc</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aes128-cbc</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3des-ctr<sup>14</sup></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3des-cbc</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>blowfish-ctr</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>blowfish-cbc</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rijndael256-cbc</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rijndael192-cbc</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rijndael128-cbc</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rijndael-cbc@lysator.liu.se</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cast128-cbc</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 9: SSH Ciphers

¹¹ aes256-ctr is safe when used with hmac-sha2-256-etm@openssh.com or hmac-sha2-512-etm@openssh.com

¹² aes128-ctr is safe when used with hmac-sha2-256-etm@openssh.com or hmac-sha2-512-etm@openssh.com

¹³ aes192-ctr is safe when used with hmac-sha2-256-etm@openssh.com or hmac-sha2-512-etm@openssh.com

¹⁴ 3des-ctr is safe when used with hmac-sha2-256-etm@openssh.com or hmac-sha2-512-etm@openssh.com
HMACs - Hash Message Authentication Code

A Hash Message Authentication Code is a method for message authentication using cryptographic hash functions combined with a secret key that is shared.

GREEN – Strong Enough to be considered SAFE	GSW SSH Server	GSW Clients V8.09.0001				
Purple – Questioned by 3rd parties	8.09.0001	Desktop	CE 4.2	CE 5.0+	GSW ConnectBot	
Black – not researched yet.		FIPS	FIPS	FIPS	FIPS	V1.9.9
RED – Should not be used						

MACs	8.09.0001	Desktop	CE 4.2	CE 5.0+	GSW ConnectBot
hmac-sha2-512-etm@opensh.com	✓	✓	✓	✓	✓
hmac-sha2-256-etm@opensh.com	✓	✓	✓	✓	✓
hmac-sha2-512	✓	✓	✓	✓	✓
hmac-sha2-256	✓	✓	✓	✓	✓
hmac-sha1	✓	✓	✓	✓	✓
hmac-sha1-96	✓	✓	✓	✓	✓
hmac-md5	✓	✓	✓	✓	✓
hmac-md5-96	✓	✓	✓	✓	✓
None	✓	✓	✓	✓	✓
hmac-sha1-etm@opensh.com	✓	✓	✓	✓	✓

Table 10: SSH HMACs

Host Key Types

The purpose of a Host Key is to ensure that when you connect to a remote host, it is actually the host you want to connect. It is the SSH Server’s public key and is used by the SSH client to decrypt the authentication message sent from the server when establishing a connection.

The public key / certificate formats supported by the GSW SSH Server are shown below.

GREEN – Strong Enough to be considered SAFE	GSW SSH Server	GSW Clients V8.09.0001				
Purple – Questioned by 3rd parties	8.09.0001	Desktop	CE 4.2	CE 5.0+	GSW ConnectBot	
Black – not researched yet.		FIPS	FIPS	FIPS	FIPS	V1.9.9
RED – Should not be used						

Public Key Algorithms	8.09.0001	Desktop	CE 4.2	CE 5.0+	GSW ConnectBot
rsa-sha2-512	✓	✓	✓	✓	✓
rsa-sha2-256	✓	✓	✓	✓	✓
ssh-ed-25519	✓	✓	✓	✓	✓
ssh-rsa	✓	✓	✓	✓	✓
ssh-dss	✓	✓	✓	✓	✓

Table 11: SSH Public Key Algorithms
Compression

GREEN – Strong Enough to be considered SAFE
Purple – Questioned by 3rd parties
Black – not researched yet.
RED – Should not be used

<table>
<thead>
<tr>
<th>Compression</th>
<th>GSW SSH Server</th>
<th>GSW Clients V8.09.0001</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>zlib</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
</tr>
</tbody>
</table>

Table 12: SSH Compression
FIPS 140-2 Resources

Additional information about FIPS and NIST can be found using the following links.

http://csrc.nist.gov/publications/PubsFIPS.html

Certificate numbers

<table>
<thead>
<tr>
<th>Certificate Numbers</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>#560</td>
<td>Certificate #560 Windows CE and Windows Mobile Enhanced Cryptographic Provider (RSAENH) (Software Versions: 5.01.01603 [1], 5.00.911762 [1], 5.04.17228 [2] and 5.05.19202 [2]) http://csrc.nist.gov/publications/PubsFIPS.html</td>
</tr>
<tr>
<td>#918</td>
<td>Certificate #918 OpenSSL FIPS Object Module) http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140crt/140crt918.pdf</td>
</tr>
</tbody>
</table>

Table 13: FIPS 140-2 certificate links
GSW SSH Server Subscription

The GSW Subscription plan provides access to the most current versions of the software as well as priority support.

In general, Georgia SoftWorks releases a new version as soon as new features are ready rather than waiting for quarterly or annual releases. Due to our development and release generation methods and JIT User Manual production, we can release software on a much more frequent basis than other organizations. As soon as features or defect resolutions are Alpha and Beta tested we generate a release. This provides our customers with features much quicker than the “grouping” or “scheduling” method used by other companies.

The GSW SSH Server (and Rocket Pack, RF DTIO) Subscription grants access to free version upgrades for the duration of the subscription. The duration is either 1, 2 or 3 years. This is good as you can obtain new versions of the software at your convenience, obtaining all new features and defect resolutions.

NOTE: New versions can be downloaded from our web site at your convenience.

The GSW Subscription plan is an excellent value. Even if you upgrade the software once every few years you will save with the subscription.

<table>
<thead>
<tr>
<th>Version Upgrade Pricing with Subscription Plan</th>
<th>TIME FROM DATE OF PURCHASE</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>For the Duration of Plan (1, 2 and 3 year plans are available).</td>
<td>Free</td>
<td></td>
</tr>
</tbody>
</table>

Table 14: Version Upgrade Pricing with GSW Subscription Plan

The pricing for version upgrades without the Subscription is based on the period of time since the date of the original purchase or last version upgrade.

<table>
<thead>
<tr>
<th>Version Upgrade Pricing without Subscription Plan</th>
<th>TIME FROM DATE OF PURCHASE</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 60 days</td>
<td>Free</td>
<td></td>
</tr>
<tr>
<td>Greater than 60 days but less than 1 year</td>
<td>50% of the current list</td>
<td></td>
</tr>
<tr>
<td>Greater than 1 year</td>
<td>90% of the current list</td>
<td></td>
</tr>
</tbody>
</table>

Table 15: Version Upgrade Pricing Without Subscription Plan
HOW TO UPDATE THE SOFTWARE

1. Download the software or use the supplied CD.
2. Make sure the SSH Server is not in use.
3. Run the Setup Program for the Update as done in the original installation.
4. You may specify the same or different installation folder.

HOW TO RENEW THE GSW Subscription

Please use the following procedure when renewing the GSW SSH Server or Rocket Pack Subscription.

<table>
<thead>
<tr>
<th>Step</th>
<th>Who</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>GSW</td>
<td>Send notice to customer indicating that the subscription is about to expire. The notice is sent approximately 4 to 8 weeks prior to the expiration of the plan.</td>
</tr>
<tr>
<td>2.</td>
<td>Customer</td>
<td>Places order for new subscription</td>
</tr>
<tr>
<td>3.</td>
<td>GSW</td>
<td>Confirms Order</td>
</tr>
<tr>
<td>4.</td>
<td>GSW</td>
<td>Ships current software, documentation and new Floating License (if applicable)</td>
</tr>
<tr>
<td>5.</td>
<td>Customer</td>
<td>Install new Floating License (and software if desired)</td>
</tr>
<tr>
<td>6.</td>
<td>Customer</td>
<td>Ships OLD Floating License back to GSW</td>
</tr>
</tbody>
</table>

Table 16: Steps to Renew the GSW Subscription Plan
SSH Server Folder Layout

The Installation folder of the GSW UTS is as follows:

```
[Diagram of GS_UTS folder layout]
```

The folders of interest are:

- **Clients**: Contains all the GSW clients for the SSH Server and the Telnet Server. These files are needed for automatic update of our client software.

- **753x**: Contains the GSW Client for Teklogix 753x devices.

- **ARMV4CE**: Contains the GSW Client for ARM devices.

- **CK30**: Contains the GSW Client for Intermec CK30 devices.

- **Desktop**: Contains the GSW clients that run on Windows Desktops.

- **PPC2003**: GSW Clients for Windows Pocket PC 2003 class devices.

- **X86**: Contains the GSW Client for x86 based devices.

- **Doc**: Contains the documentation for your viewing or printing.

- **GSJC**: Contain the files for the GS Java Client and Applet.

- **Log**: Contains the GSW UTS Log files to provide to the GSW Technical Support Group in the event of a problem. See page 118 for more information.

- **Scripts**: This is where your logon scripts will reside. See GSW UTS User Manual.
The installation folder layout of the GSW SSH Shield is as follows under the Windows\Program Files (x86) folder.

![Folder Layout](image)

Figure 70: Installation Folder Layout of the GSW SSH Shield

The Georgia SoftWorks UTS logs folder contains the GSW SSH Server log files to provide to the GSW Technical Support Group in the event of a technical problem.
System Signature - IMPORTANT PLEASE READ

NOTE: This section only applies to Software Registration

The registration software obtains a system signature that is unique to your system. This signature is an added security measure to inhibit unauthorized personnel to obtain working copies of the GSW SSH Server.

The signature is comprised of hardware and software identifiers that exist on your system that make the target system unique. These identifies are hashed into a Product ID and a Serial Number can be generated from this Product id.

If major hardware components of your system are removed, replaced or modified your Serial Number may discontinue to work and you may need a new Serial Number to obtain access to the SSH Server. Please contact Georgia SoftWorks Technical Support if needed.
Technical Support

In order to keep Technical Support Free please help keep our cost down.

- Gather all relevant system and environment information.
- Write your question down. This not only helps us but also helps you in articulating the question.

Provide Log Files To GSW Technical Support

A typical sequence when GSW Technical Support needs the logs files are to delete the log files, reproduce the behavior in question and email the log files, which are recreated during the test, to GSW Support.

Email Support Tips:

To expedite support for suspected problems please perform the following test steps below to help us diagnose the issue.

1. Disconnect all users. Make sure that no other user connects at the time of the test.
2. Wait 5 minutes
3. Delete the Log files
 - Delete all log files from the GSW UTS Server installation ‘Log’ subdirectory on the computer running the GSW Universal Terminal Server. (Usually c:\GS_UTS\Log)
4. To expedite resolution, reboot the Server if possible
5. Duplicate the problem.
6. The log files are automatically re-created. Send us the files using the GSW Ticket System
7. Please also include
 a. A description of the problem including User ID’s, Domain and IP Addresses
 b. The logon script associated with the user experiencing the problem. (That is the c_start.bat or the k_start.bat file that resides in the scripts folder in the GSW UTS directory
 c. And of course your contact information.

Again, send us the files using the GSW Ticket System. We try to respond within 24 hours.

Or Call 706.265.1018 EST, M-F 9:00 a.m. to 5:00 p.m. and have your Product ID ready